已知數(shù)列an=2n,前n項和為Sn,若數(shù)列的前n項和為Tn,則T2012的值為( )
A.
B.
C.
D.
【答案】分析:由已知數(shù)列an=2n,可知數(shù)列{an}是一個等差數(shù)列,可求出其前n項和Sn=n2+n.而,故可用裂項求和求出Tn
解答:解:∵數(shù)列an=2n,∴數(shù)列{an}是一個等差數(shù)列,∴前n項和Sn==n2+n.
,
∴Tn=…+=1-=
∴T2012=
故選D.
點(diǎn)評:本題考查了等差數(shù)列求和及裂項求和問題,理解其公式及計算方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an=2n-1,數(shù)列{bn}的前n項和為Tn,滿足Tn=1-bn
(I)求{bn}的通項公式;
(II)在{an}中是否存在使得
1an+9
是{bn}中的項,若存在,請寫出滿足題意的一項(不要求寫出所有的項);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)已知數(shù)列an=2n-1(n∈N*),把數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,記(m,n)表示該數(shù)陣中第m行中從左到右的第n個數(shù),則S(10,6)對應(yīng)于數(shù)陣中的數(shù)是
101
101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an=2n,前n項和為Sn,若數(shù)列{
1
Sn
}
的前n項和為Tn,則T2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•溫州一模)已知數(shù)列an=2n-1,數(shù)列{bn}的前n項和為Tn,滿足Tn=1-bn
(I)求{bn}的通項公式;
(II)試寫出一個m,使得
1am+9
是{bn}中的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an=-2n+12,Sn為其前n項和,則Sn取最大值時,n值為(  )
A、7或6B、5或6C、5D、6

查看答案和解析>>

同步練習(xí)冊答案