已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的斜率為
2
,且右焦點(diǎn)與拋物線x=
3
12
y2的焦點(diǎn)重合,則該雙曲線的離心率等于(  )
A、
2
B、2
C、
3
D、2
3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:確定拋物線的焦點(diǎn)坐標(biāo),利用雙曲線的性質(zhì),可得幾何量的關(guān)系,從而可得雙曲線的離心率.
解答: 解:拋物線x=
3
12
y2的焦點(diǎn)坐標(biāo)為(
3
,0).
雙曲線的右焦點(diǎn)為(c,0),
則c=
3
.漸近線為y=±
b
a
x,
因?yàn)橐粭l漸近線的斜率為
2
,所以b=
2
a,
所以b2=2a2=c2-a2,即c2=3a2
即e=
3
,
故選:C.
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,考查雙曲線的幾何性質(zhì),確定幾何量之間的關(guān)系是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=-nx+4n(n∈N*)與兩坐標(biāo)軸所圍成封閉區(qū)域內(nèi)(不含坐標(biāo)軸)的整點(diǎn)的個(gè)數(shù)為an(其中整點(diǎn)是指橫、縱坐標(biāo)都是整數(shù)的點(diǎn)),則
1
2014
(a1+a3+a5+…+a2013)=( 。
A、1012B、2012
C、3021D、4001

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線y=x2,y=x
1
3
所圍成的封閉圖形的面積為( 。
A、
1
12
B、
1
4
C、
5
12
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ是三角形中的最小角,則sinθ+
3
cosθ的取值范圍是( 。
A、(
3
,2]
B、[
3
,2]
C、(1,2]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}和{bn},滿足ak+1=ak+bk,k=1,2,3,….若存在正整數(shù)N,使得aN=a1成立,則稱數(shù)列{an}為N階“還原”數(shù)列.下列條件:
①|(zhì)bk|=1;
②|bk|=k;
③|bk|=2k,
可能使數(shù)列{an}為8階“還原”數(shù)列的是(  )
A、①B、①②C、②D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x(x-1),x>0
(x-1)2,x≤0.
,則函數(shù)f(1)的值為( 。
A、-1B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過(guò)程歸納為以下三個(gè)步驟:
①A+B+C=90°+90°+C>180°,這與三角形內(nèi)角和為180°相矛盾,A=B=90°不成立;
②所以一個(gè)三角形中不能有兩個(gè)直角;
③假設(shè)三角形的三個(gè)內(nèi)角A、B、C中有兩個(gè)直角,不妨設(shè)A=B=90°.
正確順序的序號(hào)為( 。
A、①②③B、③①②
C、①③②D、②③①

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos(2x+φ),(|φ|<
π
2
,x∈R)的圖象的一部分如圖所示,為了得到函數(shù)f(x)的圖象,只要將函數(shù)g(x)=2cos2x的圖象上所有的點(diǎn)( 。
A、向左平移
π
6
個(gè)單位長(zhǎng)度
B、向右平移
π
6
個(gè)單位長(zhǎng)度
C、向左平移
π
3
個(gè)單位長(zhǎng)度
D、向右平移
π
3
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線C1
2
ρcos(θ+
π
4
)=1,設(shè)C1與極軸的交點(diǎn)為P.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
x=
2
cosϕ
y=sinϕ
(ϕ為參數(shù)).
(Ⅰ)求點(diǎn)P的直角坐標(biāo),并把曲線C2化成普通方程;
(Ⅱ)若動(dòng)直線l過(guò)點(diǎn)P,且與曲線C2交于兩個(gè)不同的點(diǎn)A,B,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案