分析 直線ax+by+2b-a=0化為a(x-1)+b(y+2)=0,令$\left\{\begin{array}{l}{x-1=0}\\{y+2=0}\end{array}\right.$,可得直線ax+by+2b-a=0過定點(diǎn)Q(1,-2).可知:垂足N在以MQ為直徑的圓上,圓心即相等MQ的中點(diǎn)C(0,-1).|PN|的最大值為|PC|+r.
解答 解:直線ax+by+2b-a=0化為a(x-1)+b(y+2)=0,令$\left\{\begin{array}{l}{x-1=0}\\{y+2=0}\end{array}\right.$,解得x=1,y=-2.
∴直線ax+by+2b-a=0過定點(diǎn)Q(1,-2).
∴垂足N在以MQ為直徑的圓上,
圓心即相等MQ的中點(diǎn)C(0,-1).
其圓的方程為:x2+(y+1)2=2.
|PC|=$\sqrt{5}$.
∴|PN|的最大值為$\sqrt{5}+\sqrt{2}$.
故答案為:$\sqrt{5}+\sqrt{2}$.
點(diǎn)評 本題考查了直線與圓的方程、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\widehat{y}$=5-17x | B. | $\widehat{y}$=-17+5x | C. | $\widehat{y}$=17+5x | D. | $\widehat{y}$=17-5x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=$\sqrt{n}$-$\sqrt{n-1}$ | B. | an=$\sqrt{n}$+$\sqrt{n-1}$ | C. | an=$\sqrt{n}$-$\sqrt{n+1}$ | D. | an=$\sqrt{n}$+$\sqrt{n+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com