A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{2}$ |
分析 由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,漸近線分別為l1,l2,點(diǎn)P在第一 象限內(nèi)且在l1上,知F1(-c,0)F2(c,0)P(x,y),由漸近線l1的直線方程為y=$\frac{a}$x,漸近線l2的直線方程為y=-$\frac{a}$x,l2∥PF2,知ay=bc-bx,由ay=bx,知P($\frac{c}{2}$,$\frac{bc}{2a}$),由此能求出離心率.
解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,
漸近線分別為l1,l2,點(diǎn)P在第一 象限內(nèi)且在l1上,
∴F1(-c,0)F2(c,0)P(x,y),
漸近線l1的直線方程為y=$\frac{a}$x,漸近線l2的直線方程為y=-$\frac{a}$x,
∵l2∥PF2,∴$\frac{y}{x-c}=-$$\frac{a}$,即ay=bc-bx,
∵點(diǎn)P在l1上即ay=bx,
∴bx=bc-bx即x=$\frac{c}{2}$,∴P($\frac{c}{2}$,$\frac{bc}{2a}$),
∵l2⊥PF1,
∴$\frac{\frac{bc}{2a}}{\frac{3c}{2}}•(-\frac{a})=-1$,即3a2=b2,
∵a2+b2=c2,
∴4a2=c2,即c=2a,
∴離心率e=$\frac{c}{a}$=2.
故選C.
點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意直線和雙曲線位置關(guān)系的靈活運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (2,4) | C. | (3,5) | D. | (5,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com