已知橢圓過點,且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過點的直線交橢圓于不同的兩點M、N,且滿足(其中點O為坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由.
(1)(2)存在直線:或滿足題意
解析試題分析:(1)∵橢圓過點,且離心率,
∴ , ……2分
解得:,, ……4分
∴橢圓的方程為:. ……5分
(2)假設(shè)存在過點的直線交橢圓于不同的兩點M、N,且滿足. ……6分
若直線的斜率不存在,且直線過點,則直線即為y軸所在直線,
∴直線與橢圓的兩不同交點M、N就是橢圓短軸的端點,
∴,
∴,
∴直線的斜率必存在,不妨設(shè)為k , ……7分
∴可設(shè)直線的方程為:,即,
聯(lián)立 ,消y得 ,
∵直線與橢圓相交于不同的兩點M、N,
∴ 得: ① ……8分
設(shè),
∴,
∴, ……9分
又,
∴,
化簡得,
∴或,經(jīng)檢驗均滿足①式, ……10分
∴直線的方程為:或, ……11分
∴存在直線:或滿足題意. ……12分
考點:本小題主要考查橢圓的方程及直線與橢圓的位置關(guān)系.
點評:涉及到直線與圓錐曲線的位置關(guān)系時,如果需要設(shè)出直線方程,不要忘記考慮直線的斜率是否存在,聯(lián)立直線與圓錐曲線方程后,不要忘記驗證判別式大于零.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60o,.
求橢圓C的離心率;
如果|AB|=,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖橢圓:的兩個焦點為、和頂點、構(gòu)成面積為32的正方形.
(1)求此時橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點、、為的中點,且. 問:、兩點能否關(guān)于直線對稱. 若能,求出的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C中心在原點,焦點在軸上,一條經(jīng)過點且傾斜角余弦值為的直線交橢圓于A,B兩點,交軸于M點,又.
(1)求直線的方程;
(2)求橢圓C長軸的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標(biāo)原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C :經(jīng)過點離心率為。
(Ⅰ) 求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C相交于A、B兩點,以線段OA、OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標(biāo)原點。求O到直線l的距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知中心在坐標(biāo)原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(ⅰ)若為鈍角,求直線在軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的離心率為,橢圓短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的橫坐標(biāo)為,求斜率的值;②若點,求證:為定值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com