3.已知tanα=-4,求下列各式的值:
(1)sin2α;
(2)3sinαcosα;
(2)cos2α-sin2α;
(4)$\frac{4sinα-2cosα}{3sinα+5cosα}$.

分析 利用同角的三角函數(shù)基本關(guān)系式,把正弦、余弦化為正切函數(shù),計算即可.

解答 解:(1)sin2α=$\frac{{sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α}{{tan}^{2}α+1}$=$\frac{{(-4)}^{2}}{{(-4)}^{2}+1}$=$\frac{16}{17}$;
(2)3sinαcosα=$\frac{3sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{3tanα}{{tan}^{2}α+1}$=$\frac{3×(-4)}{{(-4)}^{2}+1}$=-$\frac{12}{17}$;
(3)cos2α-sin2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1{-tan}^{2}α}{{tan}^{2}α+1}$=$\frac{1{-(-4)}^{2}}{{(-4)}^{2}+1}$=-$\frac{15}{17}$;
(4)$\frac{4sinα-2cosα}{3sinα+5cosα}$=$\frac{4tanα-2}{3tanα+5}$=$\frac{4×(-4)-2}{3×(-4)+5}$=$\frac{18}{7}$.

點評 本題考查了同角的三角函數(shù)基本關(guān)系式以及正弦、余弦化為正切函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,則f(f($\frac{π}{2}$))等于( 。
A.-$\frac{1}{{e}^{2}}$B.$\frac{1}{{e}^{2}}$C.-e2D.e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,D,M分別為CC1,A1B的中點,A1D⊥CC1,△AA1B是邊長為2的正三角形,A1D=2,BC=1.
(1)證明:MD∥平面ABC;
(2)證明:BC⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知:函數(shù)g(x)=x2-2x+1.設(shè)函數(shù)f(x)=$\frac{g(x)}{x}$
(1)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數(shù)k的取值范圍;
(2)如果關(guān)于x的方程f(|2x-1|)+t•($\frac{4}{|{2}^{x}-1|}$-3)=0有三個相異的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.3${\;}^{lo{g}_{3}5}$+(2005)0-($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+sin$\frac{7π}{6}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,已知atanA+btanB=(a+b)tan$\frac{A+B}{2}$,試判斷此三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在2014年初上海市人才招聘會上,有A、B兩家公司分別開出它們招聘的工資標準:
A公司允諾:第一年月工資3000元,以后每年比上一年月工資增加500元;
B公司允諾:第一年月工資3500元,以后每年比上一年月工資增加8%;
小李選擇了A公司,小張選擇了B公司,試問:
(1)若小李和小張分別在A、B兩公司連續(xù)工作6年,第6年,小李和小張誰的月工資高?
(2)若小李和小張分別在A、B兩公司連續(xù)工作10年,這10年小李和小張的總收入誰高?((1.08)10≈2.16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.二項式(1-2x)5展開式中系數(shù)最大項是80x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.根據(jù)二分法原理求解方程x2-4=0得到的框圖可稱為(  )
A.知識結(jié)構(gòu)圖B.組織結(jié)構(gòu)圖C.工序流程圖D.程序流程圖

查看答案和解析>>

同步練習(xí)冊答案