19.已知數(shù)列1,4,9,16,…,則256是數(shù)列的(  )
A.第14項(xiàng)B.第15項(xiàng)C.第16項(xiàng)D.第17項(xiàng)

分析 根據(jù)題意,由所給數(shù)列的前幾項(xiàng)可得數(shù)列的通項(xiàng)公式an=n2,256=(16)2,即256是數(shù)列的第16項(xiàng),即可得答案.

解答 解:根據(jù)題意,數(shù)列1,4,9,16,…,
則其通項(xiàng)公式為an=n2,
而256=(16)2,即256是數(shù)列的第16項(xiàng),
故選:C.

點(diǎn)評 本題考查數(shù)列的表示方法,關(guān)鍵是根據(jù)所給的數(shù)列前幾項(xiàng),歸納出數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如表:
x-1045
f(x)1221
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示:
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當(dāng)x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時,函數(shù)y=f(x)-a有4個零點(diǎn).
⑤函數(shù)y=f(x)-a的零點(diǎn)個數(shù)可能為0,1,2,3,4.
其中正確命題的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.計算$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$的結(jié)果為( 。
A.a${\;}^{\frac{3}{2}}$B.a${\;}^{\frac{1}{6}}$C.a${\;}^{\frac{5}{6}}$D.a${\;}^{\frac{6}{5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在空間直角坐標(biāo)系中,點(diǎn)A(-4,-1,-9)與點(diǎn)B(-10,1,-6)的距離是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}({n+2})}}n為奇數(shù)\\ \frac{n}{a_n}\;\;n為偶數(shù)\end{array}$,Tn為{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知過點(diǎn)P(4,3)的光線,經(jīng)x軸上一點(diǎn)A反射后的光線過點(diǎn)Q(0,5).則點(diǎn)A的坐標(biāo)為($\frac{5}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},x<2}\\{lo{g}_{3}({2}^{x}-1),x≥2}\end{array}\right.$則f(f(2))等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖,則幾何體的體積為(  )
A.8π-16B.8π+16C.16π-8D.8π+8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若曲線y=ln(x+a)的一條切線為y=ex+b,其中a,b為正實(shí)數(shù),則a+$\frac{e}{b+2}$的取值范圍是( 。
A.$({\frac{2}{e}+\frac{e}{2},+∞})$B.[e,+∞)C.[2,+∞)D.[2,e)

查看答案和解析>>

同步練習(xí)冊答案