18.為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期4月1日4月7日4月15日4月21日4月30日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
(Ⅰ)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat$=$\overline{y}$-$\widehat$$\overline{x}$)

分析 (Ⅰ)用數(shù)組(m,n)表示選出2天的發(fā)芽情況,用列舉法可得m,n的所有取值情況,分析可得m,n均不小于25的情況數(shù)目,由古典概型公式,計(jì)算可得答案;
(Ⅱ)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫(xiě)出線性回歸方程.

解答 解:(Ⅰ)用數(shù)組(m,n)表示選出2天的發(fā)芽情況,
m,n的所有取值情況有:
(23,25),(23,30),(23,26),(23,16),(25,30),
(25,26),(25,16),(30,26),(30,16),(30,26),共有10個(gè)
設(shè)“m,n均不小于25”為事件A,
則包含的基本事件有(25,30),(25,26),(30,26)
所以P(A)=$\frac{3}{10}$,
故m,n均不小于25的概率為$\frac{3}{10}$;
(Ⅱ)由數(shù)據(jù)得$\overline{x}$=12,$\overline{y}$=27,3$\overline{x}$•$\overline{y}$=972,$\sum _{i=1}^{3}$xiyi=977,$\sum _{i=1}^{3}$xi2=434,3$\overline{x}$2=432.
由公式,得$\hat$=$\frac{977-972}{434-432}$=$\frac{5}{2}$,$\hat{a}$=27-$\frac{5}{2}$×12=-3.
所以y關(guān)于x的線性回歸方程為$\hat{y}$=$\frac{5}{2}$x-3.

點(diǎn)評(píng) 本題考查回歸直線方程的計(jì)算與應(yīng)用,涉及古典概型的計(jì)算,是基礎(chǔ)題,在計(jì)算線性回歸方程時(shí)計(jì)算量較大,注意正確計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從1,2,4,8這4個(gè)數(shù)中一次隨機(jī)地取兩個(gè)數(shù),則所取兩個(gè)數(shù)的乘積為8的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知sinθ和cosθ的等差中項(xiàng)為sinα,等比中項(xiàng)為sinβ,則cos2$α-\frac{1}{2}$cos2β=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列結(jié)論正確的是( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一實(shí)數(shù)λ使$\overrightarrow{a}$=λ$\overrightarrow$
B.“若θ=$\frac{π}{3}$,則cosθ=$\frac{1}{2}$”的否命題為“若θ≠$\frac{π}{3}$,則cosθ≠$\frac{1}{2}$”
C.已知向量$\overrightarrow{a}$、$\overrightarrow$為非零向量,則“$\overrightarrow{a}$、$\overrightarrow$的夾角為鈍角”的充要條件是“$\overrightarrow{a}$$•\overrightarrow$<0”
D.若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p:“?x∈R,ex>0”,命題q:“?x0∈R,x0-2>x02”,則(  )
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是真命題D.命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,角A、B、C所對(duì)的邊為a、b、c,且A=120°,b=5,c=6,則a=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知平面α,β的法向量分別是(-2,3,m),(4,λ,0),若α∥β,則λ+m的值( 。
A.8B.6C.-10D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2sinxcosx+1.
(1)求f($\frac{π}{4}$)的值及f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知非零向量$\overrightarrow{OA}$=(a,0),$\overrightarrow{OB}$=(0,a),$\overrightarrow{OC}$=(1,2),若A,B,C三點(diǎn)共線,則a=( 。
A.-1B.1C.3D.0或3

查看答案和解析>>

同步練習(xí)冊(cè)答案