在半徑為4的球面上有A、B、C三點(O為球心),已知AB=3,BC=5,AC=4,則點O的平面ABC的距離為
 
考點:點、線、面間的距離計算
專題:空間位置關系與距離
分析:由已知得BC為該三角形外接圓直徑,其中點O'為其圓心,由球的特性可知OO'即為O到平面ABC的距離,由此能求出球心O到平面ABC的距離.
解答: 解:由已知,三角形ABC的外接圓圓心是BC的中點,
∵AB2+AC2=BC2,
∴△ABC為直角三角形,
∴BC為該三角形外接圓直徑,其中點O'為其圓心,
由球的特性可知OO'即為O到平面ABC的距離,
∴OO'2=OB2-(
BC
2
2=16-
25
4
,
OO'=
39
2
,
∴球心O到平面ABC的距離為
39
2

故答案為:
39
2
點評:本題考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥面ABCD,AP=AB=3,AD=5,點E是PD的中點.
(Ⅰ)求證:PB∥平面AEC;
(Ⅱ)求直線AB與平面EAC所成角大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算
3
0
(ex-1)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)x+
3
4
,x≥2
log2x,0<x<2
,若g(x)=f(x)-k有兩個零點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①簡單隨機抽樣,分層抽樣和系統(tǒng)抽樣的共同特點是每個個體被抽到的概率相等;
②若A,B是兩個互斥事件,則P(A)+P(B)≤1
③111111(2)≥1000(4)
④變量x,y之間的回歸方程
y
=
b
x+
a
表示x與y之間的不確定關系.
其中所有正確命題的編號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱錐底面正方形的邊長為4cm,高與斜高夾角為35°,則斜高為
 
;側面積為
 
;全面積為
 
.(單位:精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某個容量1000的樣本的頻率分布直方圖如圖所示,則在區(qū)間[4,5]上的數(shù)據(jù)的頻數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

比較大。
7
+
15
 
10
+2
3
(用“>”或“<”符號填空)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①若y=±
3
x是一個雙曲線的兩條漸近線,則這個雙曲線的離心率為2;
②設l,m是兩條不同的直線,α,β是兩個不同的平面,若α⊥β,α∩β=l,m⊥l,則m⊥β;
③若P或q 為假命題,則p、q均為假命題;
④若f(x)=1-|x-1|(x>0),則函數(shù)F(x)=xf(x)-1只有一個零點,
其中正確命題的序號是
 

查看答案和解析>>

同步練習冊答案