已知四棱錐P-ABCD底面ABCD是直角梯形,AB⊥AD,且AD與BC平行,AD=2AB=2BC=2,△PAD是以P為直角頂點的等腰直角三角形,且二面角P-AD-C為直二面角.
(1)求證:PD⊥平面PAB;
(2)求AD與平面PCD所成角大。
考點:直線與平面垂直的判定,直線與平面所成的角
專題:空間位置關系與距離,空間角
分析:(1)由已知得AB⊥平面PAD,從而AB⊥PD,又PD⊥PA,由此能證明PD⊥平面PAB.
(2)延長DC與AB交于點M,由已知條件推導出∠ADN就為AD與平面PCD所成的角,由此能求出AD與平面PCD所成角.
解答: (1)證明:由AB⊥AD,且P-AD-C為直二面角,
所以AB⊥平面PAD,又PD?平面PAD,
所以AB⊥PD,而PD⊥PA,
因此PD與平面PAB內(nèi)的兩條相交直線垂直,
從而PD⊥平面PAB.
(2)解:延長DC與AB交于點M,
則由題意知,B,C分別為AM與DM的中點,
且平面PCD∩平面PAB=PM,
由(1)知PD⊥平面PAB,且PD?平面PDM,
所以平面PDM⊥平面PAB,過A作PM的垂線AN,則AN⊥平面PMD,
從而∠ADN就為AD與平面PCD所成的角,
由(1)知PAM為直角三角形,
從而由PA=
2
,AM=2
PM=
6
,
所以在直角三角形PAM中,AN=
2
3
3
,
于是在直角三角形AND中,tan∠ADN=
2
3
3
2
=
3
3
,所以∠ADN=30°,
即AD與平面PCD所成角為30°.
點評:本題考查直線與平面垂直的證明,考查直線與平面所成角的大小的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用秦九韶算法計算多項式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4時的值時,v2的值為( 。
A、-57B、-22
C、34D、74

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
3
x3-ax2-3x+1(a∈R)
(Ⅰ)若f(x)在區(qū)間(-1,1)上為減函數(shù),求a的取值范圍;
(Ⅱ)討論y=f(x)在(-1,1)內(nèi)的極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求曲線y=
sinx
x
在點M(π,0)處的切線方程.
(2)求函數(shù)f(x)=48x-x3在區(qū)間x∈[-3,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(2a-1)x-3
(1)當a=1時,求函數(shù)f(x)在[-
3
2
,2]上的最值;
(2)若函數(shù)f(x)在[-
3
2
,2]上的最大值為1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|-1≤x≤4},B={x|a+1<x<2a-1},且B⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設橢圓中心在原點,焦點在x軸上,A、B分別為橢圓的左、右頂點,F(xiàn)為橢圓的右焦點,已知橢圓的離心率e=
3
2
,且
AF
BF
=-1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若存在斜率不為零的直線l與橢圓相交于C、D兩點,且使得△ACD的重心在y軸右側,求直線l在x軸上的截距m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2|x|-3,x∈R
(1)判斷f(x)的奇偶性;
(2)畫出函數(shù)f(x)的圖象;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,PA為⊙0的切線,A為切點,PBC是過點O的割線,PA=10,PB=5.
(Ⅰ)求證:
AB
AC
=
PA
PC
;
(Ⅱ)求AC的值.

查看答案和解析>>

同步練習冊答案