4.{an}是首項為1,公差為3的等差數(shù)列,如果an=2 014,則序號n等于( 。
A.667B.668C.669D.672

分析 由{an}是首項為1,公差為3的等差數(shù)列,求出an=3n-2,再由an=2 014,能求出序號n.

解答 解:∵{an}是首項為1,公差為3的等差數(shù)列,
∴an=1+(n-1)×3=3n-2,
∵an=2 014,
∴3n-2=2014,解得n=672.
故選:D.

點評 本題考查等差數(shù)列的項數(shù)的求法,是基礎題,解題時要認真審,注意等差數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線4x2-$\frac{y^2}{9}$=1的漸近線方程是( 。
A.y=±$\frac{2}{3}$xB.y=±$\frac{1}{6}$xC.y=±$\frac{3}{2}$xD.y=±6x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在△ABC內取一點M,使得∠MBA=30°,∠MAC=40°,且MA=MB=BC,求∠MAB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線l:x-y+3=0和圓C:(x-1)2+y2=1,P為直線l上一動點,過P作直線m與圓C切于點A,B.
(Ⅰ)求|PA|的最小值;
(Ⅱ)當|PA|最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.利用函數(shù)單調性的定義證明:證明函數(shù)f(x)=x2+3x在[-$\frac{3}{2}$,+∞)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=x2+mx-2m-1僅存在整數(shù)零點,則實數(shù)m的集合為{0,-8}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,則輸出的結果為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.方程sin2x=cosx,x∈[0,2π]的解集是{$\frac{π}{2}$,$\frac{3π}{2}$,$\frac{π}{6}$,$\frac{5π}{6}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知x,y滿足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目標函數(shù)z=3x+y的最大值為10,則m的值為5.

查看答案和解析>>

同步練習冊答案