20.已知圓錐的底面半徑為4,高為9,則該圓錐的體積為48π.

分析 圓錐的體積為V=$\frac{1}{3}$πr2h,由此能求出結果.

解答 解:∵圓錐的底面半徑為4,高為9,
∴該圓錐的體積為V=$\frac{1}{3}$πr2h=$\frac{1}{3}×π×{4}^{2}×9$=48π.
故答案為:48π.

點評 本題考查圓錐體積的求法,考查圓錐等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房,經(jīng)測算,如果將樓房建為x(x≥10)層,那么每平方米的平均建筑費用為56+48x(單位:元).
(1)寫出樓房平均綜合費用y關于建造層數(shù)x的函數(shù)關系式.
(2)該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=$\frac{購地總費用}{建筑面積}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的首項為a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$,(n∈N*).
(I)求a2,a3的值.
(2)證明:a2n-1<a2n+1<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.△ABC的三個角A,B,C所對的邊分別為a,b,c,$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC為銳角三角形,求函數(shù)y=2sin2B-2sinBcosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知$\overrightarrow a=(cosθ,sinθ),\overrightarrow b=(1,-1)-\frac{π}{2}≤θ≤\frac{π}{2}$
(1)當$\overrightarrow a⊥\overrightarrow b$時,求θ值;
(2)求$|\overrightarrow a-\overrightarrow b|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.化簡$\frac{{sin(θ-5π)cos(-\frac{π}{2}-θ)cos(7π-θ)}}{{sin(θ-\frac{3π}{2})sin(-3π-θ)}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設ξ~B(n,p),Eξ=12,Dξ=4,則n的值是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知集合A={x|-2<x<4},B={x|x≤m},且A∩B=A,則m的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.將函數(shù)y=cosx的圖象向右平移$\frac{π}{2}$個單位長度,再向上平移1個單位長度,則所得的圖象對應的解析式為( 。
A.y=1-sinxB.y=1+sinxC.y=1-cosxD.y=1+cosx

查看答案和解析>>

同步練習冊答案