分析 根據(jù)圓的弧長(zhǎng)關(guān)系,得到∠AOB=120°,求出交點(diǎn)A的坐標(biāo),根據(jù)三角函數(shù)值建立方程關(guān)系進(jìn)行求解即可.
解答 解:∵圓直線x=$\frac{{a}^{2}}{c}$(c為雙曲線的半焦距)分為弧長(zhǎng)為2:1的兩段,
∴∠AOB=120°,則∠AOx=60°,
∵以原點(diǎn)為圓心的圓經(jīng)過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn),
∴圓的方程為x2+y2=c2,
當(dāng)x=$\frac{{a}^{2}}{c}$時(shí),($\frac{{a}^{2}}{c}$)2+y2=c2,
得y=±$\frac{b\sqrt{{a}^{2}+{c}^{2}}}{c}$,
不妨設(shè)A($\frac{{a}^{2}}{c}$,$\frac{b\sqrt{{a}^{2}+{c}^{2}}}{c}$),
則tan∠AOx=$\frac{\frac{b\sqrt{{a}^{2}+{c}^{2}}}{c}}{\frac{{a}^{2}}{c}}$=$\frac{b\sqrt{{a}^{2}+{c}^{2}}}{{a}^{2}}$=$\sqrt{3}$,
平方得b2(a2+c2)=3a4,
即(c2-a2)(a2+c2)=3a4,
即c4-a4=3a4,
則c4=4a4,
則c2=2a2,
即c=$\sqrt{2}$a,
則e=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)條件求出A的坐標(biāo),建立三角函數(shù)關(guān)系進(jìn)行求解是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和轉(zhuǎn)化能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±1 | B. | ±$\sqrt{2}$ | C. | ±$\sqrt{3}$ | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com