分析 過A1作A1M⊥AE于M,則A1M⊥平面AEFD,設(shè)∠BAE=θ,則AE=$\frac{AB}{cosθ}$,A1M=AA1cosθ,于是四棱錐的體積V=$\frac{1}{3}$AE•AD•A1M.根據(jù)AB•AD•AA1=36得出棱錐的體積.
解答 解:過A1作A1M⊥AE于M,
∵AD⊥平面AA1B1B,A1M?平面AA1B1B,
∴AD⊥A1M,又AD?平面AEFD,AE?平面AEFD,AD∩AE=A,
∴A1M⊥平面AEFD.
設(shè)∠BAE=θ,則∠AA1M=θ,
∴AE=$\frac{AB}{cosθ}$,A1M=AA1cosθ,
∴V${\;}_{{A}_{1}-AEFD}$=$\frac{1}{3}{S}_{矩形AEFD}•{A}_{1}M$=$\frac{1}{3}×\frac{AB}{cosθ}×AD×A{A}_{1}cosθ$=$\frac{1}{3}$AB•AD•AA1.
∵四棱柱的體積V=AB•AD•AA1=36,
∴V${\;}_{{A}_{1}-AEFD}$=$\frac{1}{3}×36=12$.
故答案為:12.
點評 本題考查了棱錐,棱柱的體積計算,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com