分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)z的幾何意義,利用數(shù)形結(jié)合即可得到最大值.
解答 解:約束條件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x+y得y=-3x+z,
平移直線y=-3x+z,
則由圖象可知當(dāng)直線y=-3x+z
經(jīng)過(guò)點(diǎn)A時(shí)直線y=-3x+z的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{y=4}\\{3x-2y=6}\end{array}\right.$得A($\frac{14}{3}$,4),
此時(shí)z=3×$\frac{14}{3}$+4=18,
當(dāng)直線y=-3x+z經(jīng)過(guò)B時(shí),取得最小值,
由$\left\{\begin{array}{l}{3x-2y=6}\\{x=2}\end{array}\right.$解得B(2,0),
目標(biāo)函數(shù)的最小值為:6.
則z=3x+y的取值范圍為:[6,18].
故答案為:[6,18].
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±$\frac{8}{9}$x | B. | y=±$\frac{2\sqrt{2}}{3}$x | C. | y=±$\frac{9}{8}$x | D. | y=±$\frac{3\sqrt{2}}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com