14.已知f(x)為定義在[-2,2]上的奇函數(shù),當(dāng)x∈[-2,0]時(shí),函數(shù)解析式$f(x)={x^2}-\frac{3}{2}x+a$(a∈R).
(1)寫出f(x)在[0,2]上的解析式;
(2)求f(x)在[-2,2]上的值域.

分析 (1)利用函數(shù)的奇偶性,轉(zhuǎn)化求解函數(shù)的解析式即可.
(2)利用函數(shù)的解析式,結(jié)合二次函數(shù)的性質(zhì),通過(guò)配方轉(zhuǎn)化求解最值即可.

解答 解 (1)∵f(x)為定義在[-2,2]上的奇函數(shù),且f(x)在x=0處有意義,
∴f(0)=0,即f(0)=a=0.∴a=0.
設(shè)x∈[0,2],則-x∈[-2,0].∴f(-x)=$(-x{)^2}+\frac{3}{2}x$.
又∵f(-x)=-f(x),∴-f(x)=${x^2}+\frac{3}{2}x$.
∴f(x)=$-{x^2}-\frac{3}{2}x$.x∈[0,2].
(2)當(dāng)x∈[0,2],f(x)=${x}^{2}-\frac{3}{2}x=(x-\frac{3}{4})^{2}-\frac{9}{16}$,
∴f(x)max=f(2)=1
∵f(x)是奇函數(shù),f(x)的值域?yàn)閇-1,1].

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì)函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,則z=3x+y的取值范圍為[6,18].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(Ⅰ)求值:sin(-$\frac{31π}{6}$);
(Ⅱ)已知f(α)=$\frac{sin(α-\frac{π}{2})tan(α-\frac{π}{2})}{cos(-α-π)}$,若sinα=-$\frac{1}{5}$,且α為第三象限角,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x,現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示.
(1)補(bǔ)充完成f(x)的圖象,并求函數(shù)f(x),x∈R的解析式;
(2)若函數(shù)g(x)=f(2x)+2,x∈[-1,1]的值域;
(3)求解關(guān)于x的不等式f(3x-3)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|-a-2<x<a+2},B={x|x≤-2或x≥4},若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知正方體的8個(gè)頂點(diǎn)中,有4個(gè)為一側(cè)面是等邊三角形的正三棱錐的頂點(diǎn),則這個(gè)正三棱錐與正方體的全面積之比可能為(  )
A.$1:\sqrt{3}$B.$1:\sqrt{2}$C.$2:\sqrt{2}$D.$3:\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知α∩β=l,m是平面α內(nèi)的任意直線,在平面β內(nèi)總存在一條直線n,使下列命題一定正確的是( 。
A.m與n相交B.m與n平行C.m與n垂直D.l與m、n都異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=-2sin(2x+$\frac{π}{4}$)圖象的一個(gè)對(duì)稱中心是( 。
A.($\frac{π}{8}$,0)B.(-$\frac{π}{8}$,0)C.($\frac{π}{4}$,0)D.(-$\frac{π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a=1,b=2,cosC=$\frac{1}{4}$,則sinA=( 。
A.$\frac{\sqrt{15}}{8}$B.$\frac{1}{8}$C.$\frac{\sqrt{10}}{8}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案