將全體正整數(shù)按如圖規(guī)律排成一個三角形數(shù)陣,若數(shù)2014在圖中第m行從左往右數(shù)的第n位.則(m,n)為
 
考點(diǎn):歸納推理
專題:推理和證明
分析:根據(jù)奇數(shù)行,依次減少1,偶數(shù)行,依次增加1,每行正整數(shù)的個數(shù)與行數(shù)相同,即可得到結(jié)論.
解答: 解:∵每行正整數(shù)的個數(shù)與行數(shù)相同,1+2+3+••+n=
n(n+1)
2

n(n+1)
2
≥2014,
n(n-1)
2
<2014
,
解得n=63,
因?yàn)榈?3行的第一數(shù)是
63×(63+1)
2
=2016,
2016-2014+1=3
所以2014是從上至下第63行中的行中的從左至右第第3個數(shù).
故(m,n)為(63,3)
答案:(63,3)
點(diǎn)評:本題借助于一個三角形數(shù)陣考查了數(shù)列的應(yīng)用、數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.是道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:|x-1|+|x-3|>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z=
3
-i(i是虛數(shù)單位),則z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
12
1
=1,
12+22
1+2
=
5
3
,
12+22+32
1+2+3
=
7
3
,
12+22+32+42
1+2+3+4
=
9
3
,…,則第n個等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個箱子中裝有6個白球和5個黑球,如果不放回地依次抽取2個球,則在第1次抽到黑球的條件下,第2次仍抽到黑球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系中,極點(diǎn)到直線ρsin(θ+θ0)=a(其中θ0、a為常數(shù))的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點(diǎn)P(x,y)滿足x2+y2-|x|-|y|=0,O為坐標(biāo)原點(diǎn),則|PO|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線C:
x=2cosθ
y=
3
sinθ
(θ為參數(shù))和定點(diǎn)A(0,
3
),F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點(diǎn).
(Ⅰ)以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程;
(Ⅱ)經(jīng)過點(diǎn)F1,且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點(diǎn),求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由a1=1,an+1=
an
3an+1
給出的數(shù)列{an}的第34項(xiàng)是( 。
A、
1
100
B、100
C、
34
103
D、
1
4

查看答案和解析>>

同步練習(xí)冊答案