【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的最小值.
(Ⅱ)是否存在一次函數(shù),使得對于,總有,且成立?若存在,求出的表達式;若不存在,說明理由.
【答案】(Ⅰ).(Ⅱ).
【解析】試題分析:(1)表示出,用導(dǎo)數(shù)判斷其單調(diào)性,根據(jù)單調(diào)性即可求出最小值;
(2)由(Ⅰ)知,從而得,于是h(x)可表示為關(guān)于k的一次函數(shù),根據(jù)f(x)≥h(x)恒成立可求得k值,從而可求得h(x)表達式,再驗證h(x))≥g(x)對一切x>0恒成立即可;
試題解析:(Ⅰ) 的定義域為, ,
,
易知時, , 時, ,
∴在上單調(diào)遞減,在上單調(diào)遞增,
∴當時, 取得最小值為.
(Ⅱ)由(Ⅰ)知, ,
所以,
故可證,代入,
得恒成立,
∴,
∴, ,
設(shè),則,
當時, ,當時, ,
∴在上單調(diào)遞減,在上單調(diào)遞增,
∴,
即對一切恒成立,
綜上,存在一次函數(shù),使得對于,總有,
且, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=e2x-aln x.
(1)討論f(x)的導(dǎo)函數(shù)f′(x)零點的個數(shù);
(2)證明:當a>0時,f(x)≥2a+aln.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)解不等式;
(2)若關(guān)于的方程的解集為空集,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的側(cè)面底面,底面是直角梯形,且, , 是中點.
(1)求證: 平面;
(2)若,求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當時, ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點,曲線的參考方程為(為參數(shù)).
(1)求曲線上的點到直線的距離的最大值與最小值;
(2)過點與直線平行的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸非負半軸為極軸建立坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為: (為參數(shù)),兩曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com