19.已知△ABC中,a+c=2b,3a+b=2c,求證:sinA:sinB:sinc=3:5:7.

分析 利用已知條件求出abc的關(guān)系,然后利用正弦定理求解即可.

解答 證明:△ABC中,a+c=2b,故2a+2c=4b,又3a+b=2c,兩式相加可得5a=3b,a=$\frac{3}{5}$b,代入a+c=2b,可得c=$\frac{7}{5}$b,
a:b:c=3:5:7.由正弦定理:a:b:c=sinA:sinB:sinC,
可得:sinA:sinB:sinc=3:5:7.

點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.直線l:y=-3x+b與圓C:(x-1)2+y2=1相交,則實(shí)數(shù)b的取值范圍是(-2,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,$\frac{sinA}{sinB+sinC}$=1-$\frac{a-b}{a-c}$.
(1)若b=$\sqrt{3}$,求△ABC周長(zhǎng)的取值范圍;
(2)設(shè)$\overrightarrow{m}$=(sinA,1),$\overrightarrow{n}$=(6cosB,cos2A),求$\overrightarrow{m}$•$\overrightarrow{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求下列函數(shù)的單調(diào)遞增區(qū)間
(1)y=sin$\frac{x}{2}$+cos$\frac{x}{2}$x∈(-2π,2π);
(2)y=2sin($\frac{π}{6}$-2x),x∈[0,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知定義在R上的奇函數(shù)滿足f(x+1)=-f(x),且在[0,1)上單調(diào)遞增,記a=f($\frac{1}{2}$),b=f(2),c=f(3),則a,b,c的大小關(guān)系為(  )
A.a>b=cB.b>a=cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC的三個(gè)內(nèi)角為A,B,C,向量$\overrightarrow{m}$=(cosA,-sinB),$\overrightarrow{n}$=(cosB,sinA),滿足$\overrightarrow{m}$•$\overrightarrow{n}$=cosC.
(1)求證:△ABC是直角三角形;
(2)若AC=$\sqrt{3}$,BC=6,P是△ABC內(nèi)的一點(diǎn),且∠APC=∠BPC=120°,設(shè)∠PAC=α,求tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1,設(shè)bn=2(log2an+1),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn•an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.點(diǎn)A(1,-1)到直線l:y=2x+1的距離是$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.下列敘述:
①函數(shù)f(x)=sin(2x-$\frac{π}{3}$)的一條對(duì)稱軸方程為x=-$\frac{π}{12}$;
②函數(shù)f(x)=cos(2x-$\frac{3π}{2}$)是偶函數(shù);
③函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),x∈[0,$\frac{π}{2}$],則f(x)的值域?yàn)閇0,$\sqrt{2}$];
④函數(shù)f(x)=$\frac{cosx+3}{cosx}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)有最小值,無(wú)最大值.
則所有正確結(jié)論的序號(hào)是①④.

查看答案和解析>>

同步練習(xí)冊(cè)答案