分析 (Ⅰ)將y=2t代入橢圓的普通方程得${x^2}=9(1-\frac{{4{t^2}}}{4})=9(1-{t^2})$,解出即可得到參數方程.
(Ⅱ)依題意知點A(3,0),B(0,2),設點P的坐標為(3cosθ,2sinθ),$(0<θ<\frac{π}{2})$,則S四邊形AOBP=S△BPO+S△OPA,利用三角函數和差公式及其單調性即可得出.
解答 解:(Ⅰ)將y=2t代入橢圓的普通方程得${x^2}=9(1-\frac{{4{t^2}}}{4})=9(1-{t^2})$,
于是得$x=±3\sqrt{1-{t^2}}$,
∴橢圓C的參數方程為$\left\{\begin{array}{l}x=3\sqrt{1-{t^2}}\\ y=2t.\end{array}\right.$(t為參數)和$\left\{\begin{array}{l}x=-3\sqrt{1-{t^2}}\\ y=2t.\end{array}\right.$(t為參數).
(Ⅱ)依題意知點A(3,0),B(0,2),
設點P的坐標為(3cosθ,2sinθ),$(0<θ<\frac{π}{2})$,
則S四邊形AOBP=S△BPO+S△OPA=$\frac{1}{2}×2×3cosθ+\frac{1}{2}×3×2sinθ$=$3sinθ+3cosθ=3\sqrt{2}sin(θ+\frac{π}{4})$,$(0<θ<\frac{π}{2})$,
當$sin(θ+\frac{π}{4})=1$,即$θ=\frac{π}{4}$時,四邊形AOBP面積取得最大值,其值為$3\sqrt{2}$.
點評 本題考查了橢圓的參數方程及其應用、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2x+y=0 | B. | 2x-y=0 | C. | 2x+y=0(x≠0) | D. | 2x-y=0(x≠0) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<-2) | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>2) | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1(x>0) | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com