6.每逢節(jié)假日,在微信好友群發(fā)紅包逐漸成為一種時(shí)尚,還能增進(jìn)彼此的感情.2016年春節(jié)期間,小魯在自己的微信好友群中,向在線的甲、乙、丙、丁四位好友隨機(jī)發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放一個(gè),每個(gè)人搶到的概率相同.
(1)若小魯隨機(jī)發(fā)放了3個(gè)紅包,求甲至少搶到一個(gè)紅包的概率;
(2)若丁因有事暫時(shí)離線一段時(shí)間,而小魯在這段時(shí)間內(nèi)共發(fā)放了3個(gè)紅包,其中2個(gè)紅包中各有10元,一個(gè)紅包中有5元,記這段時(shí)間內(nèi)乙所得紅包的總錢數(shù)為X元,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

分析 (1)設(shè)“甲至少得1紅包”為事件A,利用n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率計(jì)算公式能求出甲至少搶到一個(gè)紅包的概率.
(2)由題意知X可能取值為0,5,10,15,20,25,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列和數(shù)學(xué)期望.

解答 解:(1)設(shè)“甲至少得1紅包”為事件A,
由題意得:$P(A)=C_3^1×\frac{1}{4}×{(\frac{3}{4})^2}+C_3^2×{(\frac{1}{4})^2}×\frac{3}{4}+C_3^3×{(\frac{1}{4})^3}×{(\frac{3}{4})^0}=\frac{37}{64}$.
(2)由題意知X可能取值為0,5,10,15,20,25,
$P(X=0)={(\frac{2}{3})^3}=\frac{8}{27}$,
$P(X=5)=\frac{1}{3}×{(\frac{2}{3})^2}=\frac{4}{27}$,
$P(X=10)=C_2^1×\frac{1}{3}×{(\frac{2}{3})^2}=\frac{8}{27}$,
$P(X=15)=\frac{4}{27}$,
$P(X=20)={(\frac{1}{3})^2}×\frac{2}{3}=\frac{2}{27}$,
$P(X=25)={(\frac{1}{3})^3}=\frac{1}{27}$,
∴X的分布列為:

 X 0 5 10 15 20 25
 P $\frac{8}{27}$ $\frac{4}{27}$ $\frac{8}{27}$ $\frac{4}{27}$ $\frac{2}{27}$ $\frac{1}{27}$
E(X)=$0×\frac{8}{27}+5×\frac{4}{27}+10×\frac{8}{27}$+$15×\frac{4}{27}+20×\frac{2}{27}+25×\frac{1}{27}$=$\frac{25}{3}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)在曲線C上求一點(diǎn)D,使它到直線l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t為參數(shù),t∈R)的距離最短,并求出點(diǎn)D的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x,y都是正實(shí)數(shù),求證:
(1)$\frac{x}{y}$$+\frac{y}{x}$≥2;
(2)(x+y)(x2+y2)(x3+y3)≥8x3y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某著名歌星在某地舉辦一次歌友會(huì),有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎(jiǎng)活動(dòng),第一輪抽獎(jiǎng)從這1000張票根中隨機(jī)抽取10張,其持有者獲得價(jià)值1000元的獎(jiǎng)品,并參加第二輪抽獎(jiǎng)活動(dòng).第二輪抽獎(jiǎng)由第一輪獲獎(jiǎng)?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個(gè)實(shí)數(shù)x,y(x,y∈[0,4]),若滿足y≥$\frac{8}{5}x$,電腦顯示“中獎(jiǎng)”,則抽獎(jiǎng)?wù)咴俅潍@得特等獎(jiǎng)獎(jiǎng)金;否則電腦顯示“謝謝”,則不獲得特等獎(jiǎng)獎(jiǎng)金.
(Ⅰ)已知小明在第一輪抽獎(jiǎng)中被抽中,求小明在第二輪抽獎(jiǎng)中獲獎(jiǎng)的概率;
(Ⅱ)設(shè)特等獎(jiǎng)獎(jiǎng)金為a元,小李是此次活動(dòng)的顧客,求小李參加此次活動(dòng)獲益的期望;若該歌友會(huì)組織者在此次活動(dòng)中獲益的期望值是至少獲得70000元,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C的普通方程為:$\frac{x^2}{9}+\frac{y^2}{4}=1$.
(Ⅰ) 設(shè)y=2t,求橢圓C以t為參數(shù)的參數(shù)方程;
(Ⅱ) 設(shè)C與x軸的正半軸和y軸的正半軸的交點(diǎn)分別為A、B,點(diǎn)P是C上位于第一象限的動(dòng)點(diǎn),求四邊形AOBP面積的最大值.(其中O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c,d都是實(shí)數(shù),且a2+b2=1,c2+d2=4,
求證:|ac+bd|≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲、乙兩人各擲一枚骰子,試解答下列各問:
(1)列舉所有不同的基本事件;
(2)求事件“向上的點(diǎn)數(shù)之差為3”的概率;
(3)求事件“向上的點(diǎn)數(shù)之積為6”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某研究小組在電腦上進(jìn)行人工降雨模擬試驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表
方式實(shí)施地點(diǎn)大雨中雨小雨模擬實(shí)驗(yàn)總次數(shù)
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬試驗(yàn)的統(tǒng)計(jì)數(shù)據(jù)
(I)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某出租車公司響應(yīng)國家節(jié)能減排的號(hào)召,已陸續(xù)購買了140輛純電動(dòng)汽車作為運(yùn)營車輛.目前我國主流純電動(dòng)汽車按續(xù)航里程數(shù)R(單位:公里)分為3類,即A類:80≤R<150,B類:150≤R<250,C類:R≥250.該公司對(duì)這140輛車的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如表:
類型A類B類C類
已行駛總里程不超過10萬公里的車輛數(shù)104030
已行駛總里程超過10萬公里的車輛數(shù)202020
(Ⅰ)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;
(Ⅱ)公司為了了解這些車的工作狀況,決定抽取14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從C類車中抽取了n輛車.
(。┣髇的值;
(ⅱ)如果從這n輛車中隨機(jī)選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案