分析 (1)根據(jù)冪函數(shù)的定義和性質(zhì)進(jìn)行求解即可求k,a的值;
(2)若函數(shù)h(x)=-f(x)+2b$\sqrt{f(x)}$+1-b在[0,2]上的最大值為3,利用一元二次函數(shù)的性質(zhì)即可求實數(shù)b的值.
解答 解:(1)設(shè)冪函數(shù)f(x)=(a-1)xk(a∈R,k∈Q)的圖象過點(diǎn)$(\sqrt{2},2)$.
則a-1=1,即a=2,此時f(x)=xk,
即$(\sqrt{2})^{k}={2}^{\frac{k}{2}}$=2,即$\frac{k}{2}$=1,解得k=2;
(2)∵a=2,k=2,
∴f(x)=x2,
則h(x)=-f(x)+2b$\sqrt{f(x)}$+1-b=-x2+2bx+1-b
=-(x-b)2+1-b+b2,
若b<0,則函數(shù)h(x)在[0,2]上單調(diào)遞減,最大值為h(0)=1-b=3,即b=-2,滿足條件.
若0≤b≤2,此時當(dāng)x=b時,最大值為h(b)=1-b+b2=3,
即b2-b-2=0,解得b=2或b=-1(舍).
若b>2,則函數(shù)h(x)在[0,2]上單調(diào)遞增,最大值為h(2)=3b-3=3,即b=2,不滿足條件
綜上b=-2或b=2.
點(diǎn)評 本題主要考查冪函數(shù)的定義和性質(zhì)的應(yīng)用以及一元二次函數(shù)的性質(zhì),利用換元法結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.注意要進(jìn)行分類討論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 67°30′化成弧度是$\frac{3}{8}$π | B. | -$\frac{10}{3}$π化成度是-600° | ||
C. | -150°化成弧度是$\frac{5}{6}$π | D. | $\frac{π}{12}$化成度是15° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,3${\;}^{{x}_{0}}$+1>$\frac{3}{2}$ | B. | ?x0∈R,3${\;}^{{x}_{0}}$+1≥$\frac{3}{2}$ | ||
C. | ?x∈R,3x+1>$\frac{3}{2}$ | D. | ?x∈R,3x+1<$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com