已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.
(1)求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.(不需要嚴(yán)格證明)
分析:(1)由y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x,知當(dāng)x<0時(shí),f(x)=f(-x)=x2+2x,由此能求出f(x)的解析式.
(2)當(dāng)x≥0時(shí),y=x2-2x,拋物線開(kāi)口向上,對(duì)稱軸方程為x=1,頂點(diǎn)坐標(biāo)(1,-1),當(dāng)y=0時(shí),x1=0,x2=2;當(dāng)x=0時(shí),y=0;當(dāng)x<0時(shí),y=x2+2x,拋物線開(kāi)口向上,對(duì)稱軸方程為x=-1,頂點(diǎn)坐標(biāo)(-1,-1),當(dāng)y=0時(shí),x=-2.由此能作出函數(shù)f(x)的圖象.結(jié)合圖象,能求出f(x)的單調(diào)區(qū)間.
解答:解:(1)∵y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x,
當(dāng)x<0時(shí),-x>0,
f(-x)=(-x)2-2(-x)=x2+2x,
∴f(x)=f(-x)=x2+2x,
∴f(x)=
x2-2x,x≥0
x2+2x,x<0

(2)∵f(x)=
x2-2x,x≥0
x2+2x,x<0
,
∴當(dāng)x≥0時(shí),y=x2-2x,拋物線開(kāi)口向上,對(duì)稱軸方程為x=1,頂點(diǎn)坐標(biāo)(1,-1),
當(dāng)y=0時(shí),x1=0,x2=2;當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y=x2+2x,拋物線開(kāi)口向上,對(duì)稱軸方程為x=-1,頂點(diǎn)坐標(biāo)(-1,-1),
當(dāng)y=0時(shí),x=-2.
由此能作出函數(shù)f(x)的圖象如下:

結(jié)合圖象,知f(x)的增區(qū)間是(-1,0),(1,+∞);減區(qū)間是(-∞,-1),(0,1).
點(diǎn)評(píng):本題考查函數(shù)的解析式的求法,考查函數(shù)圖象的作法,考查函數(shù)的單調(diào)區(qū)間的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域?yàn)椋?,+∞).設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說(shuō)明理由;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域?yàn)椋?,+∞),a>0且當(dāng)x=1時(shí)取得最小值,設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問(wèn):PM•PN是否為定值?若是,則求出該定值,若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案