A. | ($\frac{1}{4}$,1) | B. | (1,4) | C. | (8,+∞) | D. | (1,8) |
分析 由已知中可以得到函數(shù)f(x)是一個(gè)周期函數(shù),且周期為4,將方程f(x)-loga(x+2)=0恰有4個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)f(x)的與函數(shù)y=-loga(x+2)的圖象恰有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可得到實(shí)數(shù)a的取值范圍
解答 解:∵對(duì)于任意的x∈R,都有f(x-2)=f(2+x),
∴f(x+4)=f[2+(x+2)]=f[(x+2)-2]=f(x),
∴函數(shù)f(x)是一個(gè)周期函數(shù),且T=4.
又∵當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{\sqrt{2}}{2}$)x-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有4個(gè)不同的實(shí)數(shù)解,
則函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(-2,6)上有四個(gè)不同的交點(diǎn),如下圖所示:
又f(-2)=f(2)=f(6)=1,
則對(duì)于函數(shù)y=loga(x+2),
由題意可得,當(dāng)x=6時(shí)的函數(shù)值小于1,
即loga8<1,
由此解得:a>8,
∴a的范圍是(8,+∞)
故選:C.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象與性質(zhì),其中根據(jù)方程的解與函數(shù)的零點(diǎn)之間的關(guān)系,將方程根的問題轉(zhuǎn)化為函數(shù)零點(diǎn)問題,是解答本題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,則ac2>bc2 | B. | 若a>b,則a2>b2 | ||
C. | 若a<b<0,則a2<ab<b2 | D. | 若a<b<0,則$\frac{1}{a}$>$\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6和2.4 | B. | 2和5.6 | C. | 6和5.6 | D. | 2和2.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第3項(xiàng) | B. | 第4項(xiàng) | C. | 第5項(xiàng) | D. | 第6項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com