9.(1)雙曲線與橢圓$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦點(diǎn),且焦點(diǎn)到漸近線的距離等于$\sqrt{5}$,求雙曲線的標(biāo)準(zhǔn)方程;
(2)已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上的拋物線被直線y=2x+1截得的弦長為$\sqrt{15}$,求拋物線的標(biāo)準(zhǔn)方程.

分析 (1)求出橢圓的焦點(diǎn),設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0),求出漸近線方程,運(yùn)用點(diǎn)到直線的距離公式可得b,由a,b,c的關(guān)系,求得a,進(jìn)而得到雙曲線的方程;
(2)設(shè)拋物線的方程為x2=2py(p≠0),聯(lián)立直線的方程,運(yùn)用韋達(dá)定理和弦長公式,解方程可得p,進(jìn)而得到所求拋物線的方程.

解答 解:(1)橢圓$\frac{y^2}{36}+\frac{x^2}{27}=1$的焦點(diǎn)為(0,±3),
即c=3,
設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0),
焦點(diǎn)(0,c)到漸近線ax-by=0的距離d=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b,
可得b=$\sqrt{5}$,∴a=$\sqrt{{c}^{2}-^{2}}$=2,
雙曲線方程為$\frac{y^2}{4}-\frac{x^2}{5}=1$;
(2)設(shè)拋物線的方程為x2=2py(p≠0),
則$\left\{\begin{array}{l}{y=2x+1}\\{{x}^{2}=2py}\end{array}\right.$,消去y得:
x2-4px-2p=0,設(shè)弦的端點(diǎn)坐標(biāo)為(x1,y1),(x2,y2),
可得x1+x2=4p,x1x2=-2p,
則|AB|=$\sqrt{1+4}$•$\sqrt{(4p)^{2}+8p}$=$\sqrt{15}$,
解得p=-$\frac{3}{4}$或$\frac{1}{4}$,
則拋物線的方程為x2=$\frac{1}{2}$y或x2=-$\frac{3}{2}$y.

點(diǎn)評 本題考查雙曲線和拋物線的方程,注意運(yùn)用待定系數(shù)法,考查橢圓的方程和性質(zhì),雙曲線的漸近線方程以及拋物線和直線方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長公式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.${∫}_{-1}^{1}$(x4tanx+x3+1)dx的值為(  )
A.3B.2C.$\frac{3}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$z=\frac{1-i}{1+i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足:y=f(x-1)的圖象關(guān)于(1,0)點(diǎn)對稱,且當(dāng)x≥0時(shí)恒有f(x+2)=f(x),當(dāng)x∈[0,2)時(shí),f(x)=ex-1,則f(2016)+f(-2017)=( 。ㄆ渲衑為自然對數(shù)的底)
A.1-eB.e-1C.-1-eD.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過雙曲線的一個(gè)焦點(diǎn)F2作垂直于實(shí)軸的弦PQ,F(xiàn)1是另一焦點(diǎn),若△PF1Q是等腰直角三角形,則雙曲線的離心率e等于( 。
A.$\sqrt{2}-1$B.$\sqrt{2}$C.$\sqrt{2}+1$D.$\sqrt{2}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實(shí)數(shù)m,n滿足$\frac{1}{m+n}$+$\frac{1}{m-n}$=1,則3m+2n的最小值為3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對于任意x1,x2∈D,滿足x1+x2=2a時(shí),恒有f(x1)+f(x2)=2b,則稱點(diǎn)Q為函數(shù)y(x)=f(x)圖象的對稱中心,研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4033}{2017}$)=-8066.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知中心在坐標(biāo)系原點(diǎn),焦點(diǎn)在y軸上的橢圓離心率為$\frac{1}{2}$,直線y=2與橢圓的兩個(gè)交點(diǎn)間的距離為6.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過下焦點(diǎn)的直線l交橢圓于A,B兩點(diǎn),點(diǎn)P為橢圓的上頂點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.向量$\vec a$=(1,2),$\vec b$=(1,1),則$\vec a$與$\overrightarrow$的夾角的余弦值為$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

同步練習(xí)冊答案