【題目】已知函數(shù)f(x)=|x﹣a|+ (a≠0).
(1)若a=1,解關(guān)于x的不等式f(x)≥|x﹣2|;
(2)若不等式f(x)﹣f(x+m)≤1恒成立,求正數(shù)m的最大值.

【答案】
(1)解:函數(shù)f(x)=|x﹣a|+ (a≠0).

當(dāng)a=1時(shí),可得f(x)=|x﹣1|+ ≥|x﹣2|,

等價(jià)于

|解得:x

即原不等式的解集為[ ,+∞)


(2)解:不等式f(x)﹣f(x+m)≤1恒成立,即|x﹣a|+ ﹣|x+m﹣a| =|x﹣a|﹣|x+m﹣a|≤|x﹣a﹣x﹣m+a|=m

∵f(x)﹣f(x+m)≤1恒成立,

則m≤1.

那么m的最大值為1


【解析】根據(jù)含有絕對(duì)值不等式的解法可得出不等式的解集。(2)由已知利用絕對(duì)值的性質(zhì)整理可得m≤1即m的最大值為1。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2在(0,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率是 ,且過(guò)點(diǎn) .直線y= x+m與橢圓C相交于A,B兩點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)求△PAB的面積的最大值;
(Ⅲ)設(shè)直線PA,PB分別與y軸交于點(diǎn)M,N.判斷|PM|,|PN|的大小關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,x∈R,ω>0.
(1)求函數(shù)f(x)的值域;
(2)若函數(shù)y=f(x)的圖象與直線y=﹣1的兩個(gè)相鄰交點(diǎn)間的距離為 ,求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(sinx,cos2x), =( cosx,1),x∈R,設(shè)f(x)=
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a=2,f(A)=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實(shí)數(shù)m的取值范圍為( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于實(shí)數(shù)a,b,c,下列命題正確的是( )
A.若a>b,則ac2>bc2
B.若a<b<0,則a2>ab>b2
C.若a<b<0,則
D.若a<b<0,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f'(x),其中f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的兩個(gè)零點(diǎn) 滿足 ,集合 ,則( )
A.mA , 都有f(m+3)>0
B.mA , 都有f(m+3)<0
C.m0A , 使得f(m0+3)=0
D.m0A , 使得f(m0+3)<0

查看答案和解析>>

同步練習(xí)冊(cè)答案