10.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的體積為( 。
A.1B.$\frac{4}{3}$C.3D.4

分析 根據(jù)三視圖可得該幾何體是一個(gè)直四棱柱(如圖),底面是直角梯形,高為2,利用體積公式計(jì)算即可.

解答 解:根據(jù)三視圖可得該幾何體是一個(gè)直四棱柱(如圖),
該直四棱柱的底面是直角梯形,其面積為s=$\frac{1}{2}(1+2)×1=\frac{3}{2}$
該四棱柱的高為2,則這個(gè)幾何體的體積為V=Sh=$\frac{3}{2}×2=3$
故選:C

點(diǎn)評(píng) 本題考查了根據(jù)三視圖求體積,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度,建立極坐標(biāo)系.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}+2cosα}\\{y=3+2sinα}\end{array}\right.$(α∈[0,2π],α為參數(shù)),曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{3}$)=a(a∈R).若曲線C1與曲線C2有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系中.以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過(guò)點(diǎn)P(-4,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))直線l與曲線C分別交于點(diǎn)M,N.
(1)寫(xiě)出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線l:x-y+4=0與圓C:$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$,則C上各點(diǎn)到l的距離的最小值為( 。
A.2$\sqrt{2}$-2B.2$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)是定義R在上的偶函數(shù),且f(x+1)=-f(x),若f(x)在[-1,0]上單調(diào)遞減,則f(x)在[1,3]上是( 。
A.增函數(shù)B.減函數(shù)C.先增后減的函數(shù)D.先減后增的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知全集U=Z,集合A={x∈Z|3≤x<7},B={x∈Z|x2-7x+10>0},則A∩(∁UB)=( 。
A.{3,4,5}B.{2,3,4,5}C.{4,5}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知關(guān)于x的不等式|x+a|<b的解集為{x|2<x<4}.
(I)求實(shí)數(shù)a,b的值;
(II)求$\sqrt{at+12}$$+\sqrt{bt}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸入n,x的值分別為3,2.則輸出v的值為( 。
A.9B.18C.20D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在正方體ABCD-A1B1C1D1中,異面直線A1D與D1C所成的角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案