分析 (1)取BC中點E,連結ME、NE,由已知推導出平面PAB∥平面MNE,由此能證明MN∥平面PAB.
(2)利用面面垂直的性質,由平面PMC⊥平面PAD,平面ABCD⊥平面PAD,可證CM⊥平面PAD,由AD?平面PAD,即可證明CM⊥AD.
解答 證明:(1)取BC中點E,連結ME、NE,
∵四棱錐的底面ABCD是平行四邊形,M是AD中點,N是PC中點,
∴ME∥AB,NE∥PB,
∵AB∩PB=B,ME∩NE=E,
∴平面PAB∥平面MNE,
∵MN?平面MNE,
∴MN∥平面PAB.
(2)∵平面PMC⊥平面PAD,
∵PA⊥平面ABCD,PA?平面PAD,
∴平面ABCD⊥平面PAD,
又∵平面PMC∩平面ABCD=CM,
∴CM⊥平面PAD,
∵AD?平面PAD,
∴CM⊥AD.
點評 本題主要考查了線面平行的證明,考查了面面垂直的性質,解題時要認真審題,注意空間中線線、線面、面面間的位置關系的合理運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{\sqrt{15}}}{5}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 3 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com