設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2)設(shè)為偶數(shù),,,求的最小值和最大值;
(3)設(shè),若對(duì)任意,有,求的取值范圍;
(1)在區(qū)間內(nèi)存在唯一的零點(diǎn).
(2)(3)。
解析試題分析:(1)由,,得
對(duì)恒成立,從而在單調(diào)遞增,
又,,
即在區(qū)間內(nèi)存在唯一的零點(diǎn). 分
(2)因?yàn)?nbsp;
由線性規(guī)劃
(或,) 分
(3)當(dāng)時(shí),
(Ⅰ)當(dāng)或時(shí),即或,此時(shí)
只需滿(mǎn)足,從而
(Ⅱ)當(dāng)時(shí),即,此時(shí)
只需滿(mǎn)足,即
解得:,從而
(Ⅲ)當(dāng)時(shí),即,此時(shí)
只需滿(mǎn)足,即
解得:,從而
綜上所述: 分
考點(diǎn):本題主要考查集合的概念,函數(shù)與方程,導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,指數(shù)函數(shù)性質(zhì),不等式解法。
點(diǎn)評(píng):綜合題,本題綜合性較強(qiáng),難度較大。確定方程只有一個(gè)實(shí)根,通過(guò)構(gòu)造函數(shù),研究其單調(diào)性實(shí)現(xiàn)。由,確定得到,進(jìn)一步得到,求得b的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M(-1,f(-1))處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)在R上是偶函數(shù),在區(qū)間(-∞,0)上遞增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)
定義在上的函數(shù)滿(mǎn)足:①對(duì)任意都有;
② 在上是單調(diào)遞增函數(shù);③.
(Ⅰ)求的值;
(Ⅱ)證明為奇函數(shù);
(Ⅲ)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)。
(1) 判斷并證明函數(shù)的奇偶性;
(2) 若,證明函數(shù)在(2,+)單調(diào)增;
(3) 對(duì)任意的,恒成立,求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知是定義在上的偶函數(shù),當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)若不等式的解集為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/0/illo52.png" style="vertical-align:middle;" />,對(duì)于任意的,都有,且當(dāng)時(shí),.
(1)求證:為奇函數(shù); (2)求證:是上的減函數(shù);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com