【題目】設(shè)函數(shù)f(x)=|x-1|+|2x-1|.
(Ⅰ)若對 x>0,不等式f(x)≥tx恒成立,求實數(shù)t的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數(shù)a,b滿足a2+b2=2M.證明:a+b≥2ab.

【答案】解:(Ⅰ)解: 恒成立

當(dāng)且僅當(dāng) ,即 時取等號,

∴t≤1,∴M=1.

(Ⅱ)證明:∵a2+b2≥2ab,∴ab≤1.

.(當(dāng)且僅當(dāng)“a=b”時取等號)①

又∵ ,∴

,(當(dāng)且僅當(dāng)“a=b”時取等號)②

由①、②得 .(當(dāng)且僅當(dāng)“a=b”時取等號)

∴a+b≥2ab


【解析】(Ⅰ)將函數(shù)不等式化為t小于等于含x代數(shù)式,即t小于等于該代數(shù)式的最小值,再利用基本不等式求得該代數(shù)式的最小值,從而求得t的最大值;(Ⅱ)根據(jù)基本不等式a2+b2≥2ab求得ab≤1,再對基本不等式變形求得結(jié)論.
【考點精析】掌握基本不等式是解答本題的根本,需要知道基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且
(1)確定∠C的大小;
(2)若c= ,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB、C的對邊分別為ab、c,且 成等差數(shù)列.

(Ⅰ)求B的值;

的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】最新公布的《道路交通安全法》和《道路交通安全法實施條例》對車速、安全車距以及影響駕駛?cè)朔磻?yīng)快慢等因素均有詳細(xì)規(guī)定,這些規(guī)定說到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動車輛,最后完全停止所行駛的距離,即:剎車距離=反應(yīng)距離+制動距離,反應(yīng)距離=反應(yīng)時間×速率,制動距離與速率的平方成正比,某反應(yīng)時間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為

)試將剎車距離表示為速率的函數(shù).

)若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問該車是否超速?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是

A. 恒有

B. 異面直線不可能垂直

C. 恒有平面⊥平面

D. 動點在平面上的射影在線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為的正方形與菱形所在平面互相垂直, 中點.

(1)求證: 平面;

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 有兩個不相等的零點x1 , x2 , 則 + 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓 + =1(a>b>0)的離心率為e,D為右準(zhǔn)線上一點.

(1)若e= ,點D的橫坐標(biāo)為4,求橢圓的方程;
(2)設(shè)斜率存在的直線l經(jīng)過點P( ,0),且與橢圓交于A,B兩點.若 + = ,DP⊥l,求橢圓離心率e.

查看答案和解析>>

同步練習(xí)冊答案