A. | $\sqrt{3}$-1 | B. | $\sqrt{5}$-1 | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
分析 通過連結MF2,易得MF1=c,利用勾股定理及橢圓定義計算即得結論.
解答 解:連結MF2,如圖,則正方形ABF2F1的邊長為2c,
∵M,N分別為邊AF1,BF2的中點,∴MF1=c,
由勾股定理可知:MF2=$\sqrt{M{{F}_{1}}^{2}+{F}_{1}{{F}_{2}}^{2}}$=$\sqrt{{c}^{2}+(2c)^{2}}$=$\sqrt{5}$c,
由橢圓定義可知:2a=MF1+MF2=(1+$\sqrt{5}$)c,
∴離心率e=$\frac{c}{a}$=$\frac{c}{\frac{1}{2}(1+\sqrt{5})c}$=$\frac{\sqrt{5}-1}{2}$,
故選:D.
點評 本題考查求橢圓的離心率,涉及勾股定理等基礎知識,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,2x-1≤0 | B. | ?x∈R,2x-1≤0 | C. | ?x∈R,2x-1<0 | D. | ?x∈R,2x-1<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②④ | C. | ②③ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}π}{6}$+1 | B. | $\frac{\sqrt{3}π}{6}$+π | C. | $\frac{\sqrt{3}π}{3}$+π | D. | $\frac{\sqrt{3}π}{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com