【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,f(x)=2sin(x-A)cosx+sin(B+C)(x∈R),函數(shù)f(x)的圖象關于點對稱.
(1)當時,求f(x)的值域;
(2)若a=7且,求△ABC的面積.
【答案】(1);(2)
【解析】試題分析:
試題解析:(1)∵f(x)=2sin(x-A)cosx+sin(B+C),
∴f(x)=2(sin xcosA-cosxsinA)cosx+sin A
=2sinxcosxcosA-2cos2xsin A+sin A
=sin 2xcos A-cos 2xsin A=sin(2x-A).
∵函數(shù)f(x)的圖象關于點對稱,∴,即.
又A∈(0,π),∴.∴.
∵,∴2,∴,
即函數(shù)f(x)的值域為
(2)由正弦定理,得,
又∵a=7, ,∴.
∵,∴b+c=13.
由余弦定理,得49=b2+c2-bc,即49=(b+c)2-3bc=169-3bc,
∴bc=40,∴ .
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,設傾斜角為的直線的參數(shù)方程為(為參數(shù))與曲線(為參數(shù))相交于不同的兩點、.
(1)若,求線段的中點的直角坐標;
(2)若直線的斜率為,且過已知點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了響應我市“創(chuàng)建宜居港城,建設美麗莆田”,某環(huán)保部門開展以“關愛木蘭溪,保護母親河”為主題的環(huán)保宣傳活動,將木蘭溪流經市區(qū)河段分成段,并組織青年干部職工對每一段的南、北兩岸進行環(huán)保綜合測評,得到分值數(shù)據(jù)如下表:
南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(Ⅰ)記評分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評分均為優(yōu)良的概率;
(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;
(Ⅲ)分別估計兩岸分值的中位數(shù),并計算它們的平均值,試從計算結果分析兩岸環(huán)保情況,哪邊保護更好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為, 直線過點.
(Ⅰ)若點到直線的距離為, 求直線的斜率;
(Ⅱ)設為拋物線上兩點, 且不與軸垂直, 若線段的垂直平分線恰過點, 求證: 線段中點的橫坐標為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓G: 的離心率為,過橢圓G右焦點F的直線m:x=1與橢圓G交于點M(點M在第一象限).
(Ⅰ)求橢圓G的方程;
(Ⅱ)已知A為橢圓G的左頂點,平行于AM的直線l與橢圓G相交于B,C兩點,請判斷直線MB,MC是否關于直線m對稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直角坐標平面內兩點P,Q滿足條件:①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關于原點對稱,則稱(P,Q)是函數(shù)y=f(x)的一個“伙伴點組”(點組(P,Q)與(Q,P)看作同一個“伙伴點組”).已知函數(shù)f(x)=有兩個“伙伴點組”,則實數(shù)k的取值范圍是( )
A. (-∞,0) B. (0,1)
C. D. (0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500。元的員工屬于學徒階段,沒有營銷經驗,若進行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,基進行營銷將會成功,F(xiàn)將該樣本按照“學徒階段工資”、“成熟員工工資”分成兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動;顒又,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com