【題目】在△ABC中,角AB,C所對的邊分別為a,b,c,f(x)=2sin(xA)cosx+sin(BC)(x∈R),函數(shù)f(x)的圖象關于點對稱.

(1)當時,求f(x)的值域;

(2)若a=7且,求△ABC的面積.

【答案】(1);(2)

【解析】試題分析:

試題解析(1)f(x)2sin(xA)cosxsin(BC),

f(x)2(sin xcosAcosxsinA)cosxsin A

2sinxcosxcosA2cos2xsin Asin A

sin 2xcos Acos 2xsin Asin(2xA)

∵函數(shù)f(x)的圖象關于點對稱,∴,即.

A(0π),.

2,

即函數(shù)f(x)的值域為

(2)由正弦定理,得,

又∵a7, ,

bc13.

由余弦定理,得49b2c2bc,即49(bc)23bc1693bc,

bc40, .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,設傾斜角為的直線的參數(shù)方程為為參數(shù))與曲線為參數(shù))相交于不同的兩點

1)若,求線段的中點的直角坐標

2)若直線的斜率為,且過已知點,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內角ABC的對邊分別為a,b,c,已知

1)求C;

2)若c=,ABC的面積為,求ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線與雙曲線的漸近線交于兩點,設為雙曲線上任一點,若為坐標原點),則下列不等式恒成立的是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了響應我市“創(chuàng)建宜居港城,建設美麗莆田”,某環(huán)保部門開展以“關愛木蘭溪,保護母親河”為主題的環(huán)保宣傳活動,將木蘭溪流經市區(qū)河段分成段,并組織青年干部職工對每一段的南、北兩岸進行環(huán)保綜合測評,得到分值數(shù)據(jù)如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)記評分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評分均為優(yōu)良的概率;

(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;

)分別估計兩岸分值的中位數(shù),并計算它們的平均值,試從計算結果分析兩岸環(huán)保情況,哪邊保護更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為, 直線過點.

(Ⅰ)若點到直線的距離為, 求直線的斜率;

(Ⅱ)為拋物線上兩點, 不與軸垂直, 若線段的垂直平分線恰過點, 求證: 線段中點的橫坐標為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓G 的離心率為,過橢圓G右焦點F的直線mx1與橢圓G交于點M(M在第一象限)

()求橢圓G的方程;

()已知A為橢圓G的左頂點,平行于AM的直線l與橢圓G相交于B,C兩點,請判斷直線MB,MC是否關于直線m對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直角坐標平面內兩點P,Q滿足條件:①PQ都在函數(shù)yf(x)的圖象上;②PQ關于原點對稱,則稱(PQ)是函數(shù)yf(x)的一個“伙伴點組”(點組(P,Q)(Q,P)看作同一個“伙伴點組”).已知函數(shù)f(x)有兩個“伙伴點組”,則實數(shù)k的取值范圍是(  )

A. (,0) B. (01)

C. D. (0,+)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調查,得到如下的頻率分布直方圖:

(1)試由此圖估計該公司員工的月平均工資;

(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500。元的員工屬于學徒階段,沒有營銷經驗,若進行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,基進行營銷將會成功,F(xiàn)將該樣本按照“學徒階段工資”、“成熟員工工資”分成兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動;顒又,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

同步練習冊答案