【題目】據(jù)研究,甲磁盤受到病毒感染,感染的量y(單位: 比特?cái)?shù))與時(shí)間x(單位:秒)的函數(shù)關(guān)系是,乙磁盤受到病毒感染,感染的量y(單位: 比特?cái)?shù))與時(shí)間x(單位:秒)的函數(shù)關(guān)系是,顯然當(dāng)時(shí),甲磁盤受到病毒感染增長率比乙磁盤受到病毒感染增長率大.試根據(jù)上述事實(shí)提煉一個(gè)不等式,并證明之.

【答案】

【解析】試題分析:因?yàn)榧状疟P受到感染的感染增長率是的導(dǎo)數(shù),乙磁盤受到病毒感染增長率為的導(dǎo)數(shù)又因?yàn)楫?dāng)時(shí),甲磁盤受到病毒感染增長率比乙磁盤受到病毒感染增長率大,構(gòu)造函數(shù),利用導(dǎo)數(shù)證明即可.

試題解析因?yàn)榧状疟P受到感染的感染增長率是的導(dǎo)數(shù),乙磁盤受到病毒感染增長率為的導(dǎo)數(shù)

又因?yàn)楫?dāng)時(shí),甲磁盤受到病毒感染增長率比乙磁盤受到病毒感染增長率大

下面證明:

,,,所以上是增函數(shù),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個(gè)交點(diǎn)的距離為π.若f(x)>1對(duì)任意x∈(﹣ , )恒成立,則φ的取值范圍是(
A.[ , ]
B.[ ]
C.[ , ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個(gè)零點(diǎn),則a的取值范圍為( 。

A. B. C. D.

【答案】D

【解析】

恰好有3個(gè)零點(diǎn), 等價(jià)于的圖象有三個(gè)不同的交點(diǎn),

作出的圖象,根據(jù)數(shù)形結(jié)合可得結(jié)果.

恰好有3個(gè)零點(diǎn),

等價(jià)于有三個(gè)根,

等價(jià)于的圖象有三個(gè)不同的交點(diǎn),

作出的圖象,如圖,

由圖可知,

當(dāng)時(shí),的圖象有三個(gè)交點(diǎn),

即當(dāng)時(shí),恰好有3個(gè)零點(diǎn),

所以,的取值范圍是故選D.

【點(diǎn)睛】

本題主要考查函數(shù)的零點(diǎn)與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問題以及函數(shù)零點(diǎn)問題是高考的高頻考點(diǎn),考生需要對(duì)初高中階段學(xué)習(xí)的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對(duì)稱性非常熟悉;另外,函數(shù)零點(diǎn)的幾種等價(jià)形式:函數(shù)的零點(diǎn)函數(shù)軸的交點(diǎn)方程的根函數(shù)的交點(diǎn).

型】單選題
結(jié)束】
13

【題目】設(shè)集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過的(-2,16).

(1)求函數(shù)f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范圍.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)將代入可得從而可得函數(shù)的解析式;(2)根據(jù)(1)中所求解析式判斷是實(shí)數(shù)集上的減函數(shù),不等式等價(jià)于,解不等式即可得結(jié)果.

(1)∵函數(shù)f(x)=ax(a>0且a≠1)的圖象過點(diǎn)(-2,16),

∴a-2=16

∴a=,即f(x)=,

(2)∵f(x)=為減函數(shù),f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

【點(diǎn)睛】

本題主要考查了指數(shù)函數(shù)的解析式和指數(shù)函數(shù)單調(diào)性的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識(shí)解答問題的能力,屬于基礎(chǔ)題.

型】解答
結(jié)束】
19

【題目】2017年APEC會(huì)議于11月10日至11日在越南峴港舉行,某研究機(jī)構(gòu)為了了解各年齡層對(duì)APEC會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在[20,45]內(nèi)的市民舉行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分布為[20,25),[25.30),[30,35),[35,40),[40,45]).

(1)求選取的市民年齡在[30,35)內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與APEC會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在[35,40)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.

(1)若中點(diǎn),證明:平面

(2)當(dāng)時(shí),求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競賽.下圖(1)和下圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競賽的學(xué)生成績按, , , 分組,得到的頻率分布直方圖.

(1)請(qǐng)計(jì)算高一年級(jí)和高二年級(jí)成績小于60分的人數(shù);

(2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?

附:臨界值表及參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=cos(2x-).

(1)利用“五點(diǎn)法”,完成以下表格,并畫出函數(shù)fx)在一個(gè)周期上的圖象;

(2)求函數(shù)fx)的單調(diào)遞減區(qū)間和對(duì)稱中心的坐標(biāo);

(3)如何由y=cosx的圖象變換得到fx)的圖象.

2x-

0

π

x

fx

查看答案和解析>>

同步練習(xí)冊(cè)答案