函數(shù)f(x)=2x2-4x-3的零點個數(shù)為
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:要求函數(shù)的零點,即為研究方程的根,因此只需用判別式判斷該二次方程的根的個數(shù)即可.
解答: 解:函數(shù)f(x)=2x2-4x-3的零點即為2x2-4x-3=0的根,
因為△=(-4)2+4×3×2=40>0.
所以該二次方程有兩個不相等的實數(shù)根,
所以函數(shù)f(x)=2x2-4x-3有2個零點.
故答案為2
點評:本題考查了函數(shù)的零點與方程的根之間的關(guān)系,一般的它們之間是可以相互轉(zhuǎn)化的.可以互為方法利用的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-1<x<2},集合B={x|1<x<3},則A∪B等于( 。
A、{ x|2<x<3}
B、{x|-1<x<3}
C、{x|-1<x<2}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
(1)sin3α=3sinα-4sin3α;
(2)cos3α=4cos3α-3cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點O,焦點與橢圓
x2
25
+
y2
9
=1的右焦點重合.
(1)求拋物線C的方程;
(2)在拋物線C的對稱軸上是否存在定點M,使過點M的動直線與拋物線C相交于P,Q兩點時,都有∠POQ=
π
2
.若存在,求出M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:①a1=1;②所有項an∈N*;③1=a1<a2<…<an<an+1<…設(shè)集合Am={n|an≤m,m∈N*},將集合Am中的元素的最大值記為bm.換句話說,bm是數(shù)列{an}中滿足不等式an≤m的所有項的項數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列{an}的伴隨數(shù)列為1,1,1,2,2,2,3,請寫出數(shù)列{an};
(2)設(shè)an=3n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前100之和;
(3)若數(shù)列{an}的前n項和Sn=
3
2
n2-
1
2
n+c(其中c常數(shù)),試求數(shù)列{an}的伴隨數(shù)列{bn}前m項和Tm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求數(shù)列{an}的前n項和Sn滿足Sn=2an-n,設(shè)bn=
an
an+1
,記數(shù)列{bn}的前n和為Tn,證明-
1
3
<Tn-
n
2
<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:5x+5x+1+5x+2=3x+3x+1+3x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱錐S-ABC中,SA⊥AC,AC⊥BC,M為SB的中點,D為AB的中點,且△AMB為正三角形.
(1)求證:DM∥平面SAC;
(2)求證:平面SBC⊥平面SAC;
(3)若BC=4,SB=20,求三棱錐D-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=4,點P為面ADD1A1的對角線AD1上的動點(不包括端點).PM⊥平面ABCD交AD于點M,MN⊥BD于點N.
(1)設(shè)AP=x,將PN長表示為x的函數(shù);
(2)當(dāng)PN最小時,求異面直線PN與A1C1所成角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

同步練習(xí)冊答案