【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),若當時, 的最大值為.

(1)求函數(shù)的解析式;

(2)若對任意的, ,不等式恒成立,求的最大值.

【答案】(1)見解析;(2) .

【解析】試題分析:(1)由題意,得,對a分類討論,明確函數(shù)的單調(diào)性,從而得到函數(shù)的解析式;(2).令的最小值恒大于等于零,從而得到的最大值.

試題解析:

(1)由題意,得.

,即時, 時為單調(diào)遞減函數(shù),

所以最大值為.

,即時,當時, , 單調(diào)遞增;

時, , 單調(diào)遞減,

所以的最大值為.

時,即時, 時為單調(diào)遞增函數(shù),

所以的最大值為.

綜上得

(2)令.

①當時, ,

,得,

所以當時,

時,

最小值為 .

故當時, 恒成立.

②當,且時, .

因為,

所以單調(diào)遞增,

.

,

,

故當時, 為減函數(shù),

所以,

,

所以當時, ,

恒成立.

③當,且時,

,

因為,

所以單調(diào)遞減,

.

,

所以當時, 為增函數(shù),

所以,

所以,即.

綜上可得當時,“”是“成立”的充要條件.

此時.

,

,得.

故當時, ;

時, ,

所以的最大值為,

當且僅當, 時,取等號,

的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn,對任意nN*總有2Snan2+n,且anan+1.若對任意nN*,θR,不等式λn+2)恒成立,求實數(shù)λ的最小值( )

A.1B.2C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)的圖象如圖所示,過點

)求函數(shù)的單調(diào)遞減區(qū)間和極大值點;

)求實數(shù)的值;

)若恰有兩個零點,請直接寫出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且有極大值.

(Ⅰ)求的解析式;

(Ⅱ)若的導函數(shù),不等式為正整數(shù))對任意正實數(shù)恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面、平面、平面、直線以及直線,則下列命題說法錯誤的是( )

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在三棱錐,平面平面為等邊三角形,,,O,M分別為,的中點

求證:平面

線段上一點,滿足平面平面試說明點的位置;

求三棱錐的體積

查看答案和解析>>

同步練習冊答案