【題目】在某次電影展映活動(dòng)中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計(jì)一隨機(jī)抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.

(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表

(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為選擇影片類型與性別有關(guān)?

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(Ⅰ)見解析;(Ⅱ)見解析.

【解析】試題分析:(Ⅰ)根據(jù)已知條件直接完成 列聯(lián)表即可.
(Ⅱ)根據(jù)表中數(shù)據(jù)計(jì)算 ,然后判斷“觀影類型與性別有關(guān)”.

試題解析:(Ⅰ)觀看文藝片的男性觀眾有人,所以觀看文藝片的女性觀眾有40人,女性觀眾共有人.得到列聯(lián)表如下:

(Ⅱ)由(Ⅰ)中列聯(lián)表的數(shù)據(jù)可得, .

因?yàn)?/span>,所以能在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為選擇影片類型與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年時(shí)紅軍長(zhǎng)征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長(zhǎng)征勝利80周年知識(shí)問答,宣傳長(zhǎng)征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng),其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個(gè)紀(jì)念品,其數(shù)據(jù)表格如下:

公園

獲得簽名人數(shù)

45

60

30

15

(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺(tái)記者的采訪,求這兩人均來自乙公園的概率;

(Ⅲ)電視臺(tái)記者對(duì)乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長(zhǎng)征”歷史的問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):

有興趣

無興趣

合計(jì)

25

5

30

15

15

30

合計(jì)

40

20

60

據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長(zhǎng)征”歷史與性別有關(guān).

臨界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝著)一書中有關(guān)于三階幻方的問題:將1, 2, 3, 4, 5, 6, 7, 8, 9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等 (如圖所示),我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是__________.

8

3

4

1

5

9

6

7

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), , .

(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, ,且 交于點(diǎn), 上任意一點(diǎn).

(1)求證: ;

(2)已知二面角的余弦值為,若的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一張長(zhǎng)為,寬為)的長(zhǎng)方形鐵皮,準(zhǔn)備用它做成一個(gè)無蓋長(zhǎng)方體鐵皮容器,要求材料利用率為100%,不考慮焊接處損失.如圖,在長(zhǎng)方形的一個(gè)角上剪下一塊邊長(zhǎng)為的正方形鐵皮,作為鐵皮容器的底面,用余下材料剪拼后作為鐵皮容器的側(cè)面,設(shè)長(zhǎng)方體的高為,體積為.

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該鐵皮容器體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求直線和圓的極坐標(biāo)方程;

(2)射線(其中)與圓交于兩點(diǎn),與直線交于點(diǎn),射線與圓交于兩點(diǎn),與直線交于點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的月固定成本為10(萬元),每生產(chǎn)件,需另投入成本為(萬元).當(dāng)月產(chǎn)量不足30件時(shí), (萬元);當(dāng)月產(chǎn)量不低于30件時(shí), (萬元).因設(shè)備問題,該廠月生產(chǎn)量不超過50件.現(xiàn)已知此商品每件售價(jià)為5萬元,且該廠每個(gè)月生產(chǎn)的商品都能當(dāng)月全部銷售完.

(1)寫出月利潤(rùn)(萬元)關(guān)于月產(chǎn)量(件)的函數(shù)解析式;

(2)當(dāng)月產(chǎn)量為多少件時(shí),該廠所獲月利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),若直線 與曲線沒有公共點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案