4.在下列各題中,p是q的什么條件?
(1)p:四邊形是正方形,q:四邊形的邊相等.
(2)p:t≠3,q:t2≠9.
(3)p:x>y.q:$\frac{1}{x}$<$\frac{1}{y}$.

分析 根據(jù)充要條件的定義,分別判斷三個(gè)命題的充要性,綜合可得答案.

解答 解:(1)p:四邊形是正方形,q:四邊形的邊相等.由p⇒q,但由q推不出p,故p是q充分不必要條件
(2)p:t≠3,q:t2≠9.由q⇒p,由p推不出q,故p是q的必要不充分條件,
(3)p:x>y.q:$\frac{1}{x}$<$\frac{1}{y}$.由p推不出q,例如x=1,y=-1,由q推不出p,例如y=1,x=-1,故p是q既不是充分也不必要條件,

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是充要條件的定義,熟練掌握并正確理解充要條件的定義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,則cos2θ=$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)過點(diǎn)A(-3,2),且離心率e=$\sqrt{5}$,如果B、C為雙曲線上的動(dòng)點(diǎn),直線AB與直線AC的斜率互為相反數(shù),則直線BC的斜率為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$)+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{4},\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)變量x與y線性相關(guān),且相關(guān)系數(shù)為0.875,設(shè)變量x1=10x,y1=10y,則變量y1與x1的相關(guān)系數(shù)為( 。
A.0.875B.0.125C.1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0且a≠1).
(1)求f(x)的單調(diào)區(qū)間.
(2)試確定f(x)的奇偶性和周期性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=ln(2x)+2x-a(a∈R).若存在b∈[1,e](e是自然對(duì)數(shù)的底數(shù)),使f(f(b))=b成立,則a的取值范圍是( 。
A.[1,e+1]B.[ln2+1,e+ln2+1]C.[e,e+1]D.[ln2,e+ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求以坐標(biāo)軸為對(duì)稱軸,一條漸進(jìn)線方程為x+3y=0,并且過點(diǎn)(3,2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)y=f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(-x)=f(x)與f(4-x)=f(x),若當(dāng)x∈[0,2]時(shí),f(x)=-x2+1,則當(dāng)x∈[-6,-4]時(shí),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案