分析 (1)先將cos(x+$\frac{π}{6}$)展開,然后借助于輔助角公式化簡,求解函數(shù)的周期;
(2)根據(jù)x的范圍求出2x+$\frac{π}{6}$的范圍,結合三角函數(shù)的圖象與性質求出最值.
解答 解:(1)f(x)=4sinxcosxcos$\frac{π}{6}$-4sin2xsin$\frac{π}{6}$+1
=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).
∴f(x)的最小正周期是$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{4},\frac{π}{3}$],∴2x+$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],
∴當2x+$\frac{π}{6}$=-$\frac{π}{3}$時,f(x)取得最小值-$\sqrt{3}$,
當2x+$\frac{π}{6}$=$\frac{π}{2}$時,f(x)取得最大值2.
點評 本題綜合考查三角公式,三角恒等變換等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 既不充分也不必要條件 | D. | 充要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com