14.設(shè)y=f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(-x)=f(x)與f(4-x)=f(x),若當(dāng)x∈[0,2]時(shí),f(x)=-x2+1,則當(dāng)x∈[-6,-4]時(shí),求f(x)的解析式.

分析 由f(-x)=f(x)與f(4-x)=f(x)可得f(x)是周期為4的偶函數(shù),

解答 解:∵f(-x)=f(x),
∴f(4-x)=f(x-4)=f(x),
∴f(x)是周期為4的偶函數(shù).
∵當(dāng)x∈[0,2]時(shí),f(x)=-x2+1,
∴當(dāng)x∈[4,6]時(shí),f(x)=-(x-4)2+1,
∵f(x)是偶函數(shù),
∴當(dāng)x∈[-6,-4]時(shí),f(x)=-(-x-4)2+1=-x2-8x-15.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性與周期性的應(yīng)用,合理構(gòu)造自變量的對(duì)應(yīng)區(qū)間是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在下列各題中,p是q的什么條件?
(1)p:四邊形是正方形,q:四邊形的邊相等.
(2)p:t≠3,q:t2≠9.
(3)p:x>y.q:$\frac{1}{x}$<$\frac{1}{y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.用0到9這10個(gè)數(shù)字,可組成多少個(gè)沒有重復(fù)數(shù)字的五位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知P(m,n)是直線3x+4y-12=0上的一點(diǎn),求(m-1)2+(n-2)2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明:tan2α-$\frac{1}{ta{n}^{2}α}$=-$\frac{2sin4α}{si{n}^{3}2α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,M為曲線y=-$\frac{4}{x}$上的一點(diǎn).過點(diǎn)M作x軸、y軸的垂線.垂足分別為E、F.分別交直線y=$\frac{\sqrt{3}}{3}$x+m于點(diǎn)D、C兩點(diǎn).若直線y=$\frac{\sqrt{3}}{3}$x+m與y軸交于點(diǎn)A.與x軸相交于點(diǎn)B;
(1)若四邊形MEOF為正方形,求M的坐標(biāo);
(2)求AD•BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知0<x<$\frac{π}{4}$,比較(tanx)cotx,(cotx)tanx,(tanx)cosx的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,兩條異面直線a,b所成的角為θ,在直線a,b上分別取點(diǎn)A′,E和點(diǎn)A,F(xiàn),使AA′⊥a,且AA′⊥b(AA′稱為異面直線a,b的公垂線),已知A′E=m,AF=n,EF=l,求公垂線AA′的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.O是平面內(nèi)的一個(gè)定點(diǎn),A,B,C是平面內(nèi)不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),λ∈[0,+∞),則P點(diǎn)所在的直線是△ABC的( 。
A.B.中線C.D.角平分線

查看答案和解析>>

同步練習(xí)冊(cè)答案