【題目】已知數(shù)列{an}的前n項和為Sn , 對任意n∈N+ , Sn=(﹣1)nan+ +n﹣3且(t﹣an+1)(t﹣an)<0恒成立,則實數(shù)t的取值范圍是

【答案】(﹣ ,
【解析】解:由Sn=(﹣1)nan+ +n﹣3,得a1=﹣ ; 當n≥2時,an=Sn﹣Sn1=(﹣1)nan+ +n﹣3﹣(﹣1)n1an1 ﹣(n﹣1)+3
=(﹣1)nan+(﹣1)nan1 +1,
若n為偶數(shù),則an1= ﹣1,∴an= ﹣1(n為正奇數(shù));
若n為奇數(shù),則an1=﹣2an +1=2( ﹣1)﹣ +1=3﹣
∴an=3﹣ (n為正偶數(shù)).
函數(shù)an= ﹣1(n為正奇數(shù))為減函數(shù),最大值為a1=﹣ ,
函數(shù)an=3﹣ (n為正偶數(shù))為增函數(shù),最小值為a2= ,
若(t﹣an+1)(t﹣an)<0恒成立,
則a1<t<a2 , 即﹣ <t<
所以答案是:(﹣ , ).
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的通項公式的相關(guān)知識,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=﹣1,an+1=2an+3n﹣1(n∈N*),則其前n項和Sn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρ2﹣ρ2cos2θ=12.若曲線C的左焦點F在直線l上,且直線l與曲線C交于A,B兩點.
(1)求m的值并寫出曲線C的直角坐標方程;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某工廠兩車間工人掌握某技術(shù)情況,現(xiàn)從這兩車間工人中分別抽查名和名工人,經(jīng)測試,將這名工人的測試成績編成的莖葉圖若成績在以上(包括)定義為“良好,成績在以下定義為“合格”。已知車間工人的成績的平均數(shù)為車間工人的成績的中位數(shù)為.

(1)求,的值;

(2)求車間工人的成績的方差;

(3)在這名工人中,用分層抽樣的方法從 “良好”和“及格”中抽取再從這人中選人,求至少有一人為“良好”的概率。

參考公式:方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E,F(xiàn)為CD上任意兩點,且EF的長為定值,則下面的四個值中不為定值的是(
A.點Q到平面PEF的距離
B.直線PE與平面QEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線與直線交于兩點,

(Ⅰ)當時,求在點處的切線方程;

(Ⅱ)若軸上存在點,當變動時,總有,試求出坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義[x]表示不超過的最大整數(shù),如[2]=2,[2,2]=2,執(zhí)行如圖所示的程序框圖,則輸出S=(
A.1991
B.2000
C.2007
D.2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=8a2lnx+x2+6ax+b(a,b∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x,求a,b的值;
(2)若a≥1,證明:x1 , x2∈(0,+∞),且x1≠x2 , 都有 >14成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線,且直線有唯一的一個點,使得過點作圓的兩條切線互相垂直,則_____;設(shè)是直線上的一條線段,若對于圓上的任意一點,則的最小值_____

查看答案和解析>>

同步練習(xí)冊答案