設(shè)兩個(gè)向量
a
=(λ+2,λ2-cos2α)和
b
=(m,
m
2
+sinα),其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是(  )
A、[-1,6]
B、[-6,1]
C、(-∞,
20
9
]
D、[4,8]
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)向量相等的概念,向量相等,即向量的橫縱坐標(biāo)相等,可哪λ用m表示,所以
λ
m
可化簡(jiǎn)為2-
1
m
,所以只需求
1
m
的范圍即可,再利用向量相等得到的關(guān)系式,把m用α的三角函數(shù)表示,根據(jù)三角函數(shù)的有界性,求出m的范圍,就可得到
1
m
的范圍.
解答: 解:∵
a
=2
b
,
∴λ+2=2m,①λ2-cox2α=m+2sinα.②
∴λ=2m-2代入②得,4m2-9m+4=cox2α+2sinα=1-sin2α+2sinα
=2-(sinα-1)2
∵-1≤sinα≤1,∴0≤(sinα-1)2≤4,-4≤-(sinα-1)2≤0
∴-2≤2-(sinα-1)2≤2
∴-2≤4m2-9m+4≤2
分別解4m2-9m+4≥-2,與4m2-9m+4≤2得,
1
4
≤m≤2
1
2
1
m
≤4
λ
m
=
2m-2
m
=2-
2
m

∴-6≤2-
2
m
≤1
λ
m
的取值范圍是[-6,1]
故選:B
點(diǎn)評(píng):本題考查了向量相等的概念,三角函數(shù)的性質(zhì),一元二次不等式的解法,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,a=10,B=60°,C=45°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x,g(x)=-x2+2x+b(b∈R),記h(x)=f(x)-
1
f(x)

(1)判斷h(x)的奇偶性,并證明;
(2)f(x)在x∈[1,2]的上的最大值與g(x)在x∈[1,2]上的最大值相等,求實(shí)數(shù)b的值;
(3)若2xh(2x)+mh(x)≥0對(duì)于一切x∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax2,a為常數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1、x2,試證明:x1x2>e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠A=90°,D是AC上一點(diǎn),E是BC上一點(diǎn),若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[-3,4]上隨機(jī)地取一個(gè)實(shí)數(shù)a使得函數(shù)f(x)=x2+ax-4在區(qū)間[2,4]上存在零點(diǎn)的概率是( 。
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,Sn是{an}的前n項(xiàng)和,且
Sn
=
Sn-1
+1(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+2n-1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)(2x-1)5+(x+2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a5|=( 。
A、242B、110
C、105D、82

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:ax+2y+6=0與直線l2:x+(a-1)y+a2-1=0,若(1)l1∥l2;(2)l1⊥l2;(3)l1與l2相交;(4)l1與l2重合,分別求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案