設(shè)(2x-1)5+(x+2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a5|=(  )
A、242B、110
C、105D、82
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:把(2x-1)5+(x+2)4按照二項(xiàng)式定理展開,求得a0、a1、a2、a5的值,可得|a0|+|a1|+|a2|+|a5|的值.
解答: 解:∵(2x-1)5+(x+2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5 =(32x5-80x4+80x3-40x2+10x-1)+(x4+8x3+24x2+32x+16)
∴a0=-1+16=15,a1=10+32=42,a2=-40+24=-16,a5=32,
則|a0|+|a1|+|a2|+|a5|=15+42+|-16|+32=105,
故選:C.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an},公差d=2,若a2,a4,a8成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量
a
=(λ+2,λ2-cos2α)和
b
=(m,
m
2
+sinα),其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是( 。
A、[-1,6]
B、[-6,1]
C、(-∞,
20
9
]
D、[4,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(1-x)+log3(x+5).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P到點(diǎn)(0,-3)與到點(diǎn)(0,3)的距離之差為2,則點(diǎn)P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且滿足對任意x∈R,f(x+2)=f(x)成立,當(dāng)x∈(-1,0)時(shí),f(x)=2x,求當(dāng)x∈(2,3)時(shí),f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某天,甲要去銀行辦理儲蓄業(yè)務(wù),已知銀行的營業(yè)時(shí)間為9:00至17:00,設(shè)甲在當(dāng)天13:00至18:00之間任何時(shí)間去銀行的可能性相同,那么甲去銀行恰好能辦理業(yè)務(wù)的概率是( 。
A、
1
3
B、
3
4
C、
5
8
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AD=2BC=2,AB=1.點(diǎn)E在棱AB上,平面A1EC與棱C1D1相交于點(diǎn)F.
(Ⅰ)求證:A1F∥平面B1CE; 
(Ⅱ)求證:AC⊥平面CDD1C1;
(Ⅲ)寫出三棱錐B1-A1EF體積的取值范圍.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-x
x2-x+1
的值域是
 

查看答案和解析>>

同步練習(xí)冊答案