12.集合A={X|2<X<4},集合M={X|3<X<2K+1},若集合M是集合A的子集,求實(shí)數(shù)k的取值范圍.

分析 根據(jù)題意,分2種情況討論:①、M=∅,則2k+1≤3,②、M≠∅,則有$\left\{\begin{array}{l}{2k+1>3}\\{2k+1≤4}\end{array}\right.$,解可得k的值,綜合即可得答案.

解答 解:根據(jù)題意,集合M是集合A的子集,
則分2種情況討論:
①、M=∅,則2k+1≤3,
解可得k≤1,
②、M≠∅,則有$\left\{\begin{array}{l}{2k+1>3}\\{2k+1≤4}\end{array}\right.$,
解可得1<k≤$\frac{3}{2}$,
綜合可得:$k≤\frac{3}{2}$,
故實(shí)數(shù)k的取值范圍為{k|$k≤\frac{3}{2}$}.

點(diǎn)評(píng) 本題考查集合的子集,注意集合M可能為空集,需要分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是( 。
A.在統(tǒng)計(jì)學(xué)中,回歸分析是檢驗(yàn)兩個(gè)分類變量是否有關(guān)系的一種統(tǒng)計(jì)方法
B.線性回歸方程對(duì)應(yīng)的直線$\widehat{y}$=$\widehat$x+$\widehat{a}$至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),(x3,y3),(xn,yn)中的一個(gè)點(diǎn)
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解關(guān)于x的不等式 $x-\frac{1}{x}$≥a(x-1).(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列四個(gè)說(shuō)法中,正確說(shuō)法的個(gè)數(shù)是(  )
①若p∨q為真命題,則p∧q為真命題;
②設(shè)命題p:?n∈N,n2>2n,則?p:?x∈N,n2<2n;
③命題$p:?α∈R,cos(α+\frac{3π}{2})+sin(α-π)=0$為真命題;
④平面四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow 0,(\overrightarrow{AB}-\overrightarrow{AD})•\overrightarrow{AC}=0$,則四邊形ABCD是矩形.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax-1(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)F(x)=f(x)-xlnx在定義域內(nèi)零點(diǎn)的個(gè)數(shù);
(3)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下列式子:
13=(1×1)2
13+23+33=(2×3)2,
l3+23+33+43+53=(3×5)2,
l3+23+33+43+53+63+73=(4×7)2,…
由歸納思想,第n個(gè)式子13+23+33+…+(2n-1)3=[n(2n-1)]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.經(jīng)過(guò)點(diǎn)P(6,5),Q(2,3)的直線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=60°,則$\overrightarrow{a}$•$\overrightarrow{a}$+$\overrightarrow{a}$•$\overrightarrow$等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1+$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.觀察正切曲線,滿足條件tanx>1的x的取值范圍是($\frac{π}{4}+kπ$,$\frac{π}{2}+kπ$),k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案