11.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則實數(shù)m=-$\sqrt{3}$.

分析 根據(jù)向量的夾角公式計算即可.

解答 解:$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(m,1),
∴|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{{m}^{2}+1}$,$\overrightarrow{a}•\overrightarrow$=$\sqrt{3}$m+1,
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{\sqrt{3}m+1}{2\sqrt{{m}^{2}+1}}$=cos$\frac{2π}{3}$=-$\frac{1}{2}$,
解得m=0(舍去)或m=-$\sqrt{3}$,
故答案為:-$\sqrt{3}$

點評 本題考查了向量的夾角公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z=2-3i,則該復(fù)數(shù)的實部和虛部分別為( 。
A.2,-3iB.2,3C.-3,2D.2,-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=ax+b和函數(shù)y=ax2+bx+c的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若2x+y≥m恒成立,則實數(shù)m的取值范圍是(-∞,8],當(dāng)m取到最大值時x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=3sin4x+$\sqrt{3}$cos4x的最大值是( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a∈Z,且0≤a<13,若1220+a能被13整除,則a=( 。
A.0B.1C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,真命題是( 。
A.?x0∈R,使得ex0≤0B.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)M(x0,y0)是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點,A,B是其左,右頂點,2$\overrightarrow{AM}$•$\overrightarrow{BM}$=$x_0^2$-a2,則離心率e=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{4}{5}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若0<x<1,則$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$等于2x.

查看答案和解析>>

同步練習(xí)冊答案