【題目】如圖(1)所示,五邊形中,,,分別是線段的中點,且,現(xiàn)沿翻折,使得,得到的圖形如圖(2)所示.
圖(1) 圖(2)
(1)證明:平面;
(2)若平面與平面所成角的平面角的余弦值為,求的值.
【答案】(1)見解析(2)
【解析】
試題(1)根據(jù)二面角定義得是二面角的平面角,即得平面平面.由等腰三角形性質(zhì)得,根據(jù)面面垂直性質(zhì)定理得平面,即得.根據(jù)勾股定理得,最后根據(jù)線面垂直判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標系,設(shè)立各點坐標,根據(jù)方程組解得平面一個法向量,根據(jù)向量數(shù)量積求夾角,最后根據(jù)線面角與向量夾角互余關(guān)系列方程,解得的值.
試題解析:(1)如圖,連接.因為,且是二面角的平面角,故平面平面.
因為,為線段的中點,故,
因為平面平面,平面,故平面,
因為平面,故.
,故,
即,因為,所以平面.
(2)因為,所以,由(I)知,平面,所以兩兩垂直,
如圖,建立空間直角坐標系,設(shè),則,,,
則,.設(shè)平面的法向量為,
由得令可得,故;
又為平面的一個法向量,平面與平面所成角的平面角的余弦值為,
所以,解得(負值舍去),故.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐中,底面為等邊三角形,分別是的中點.
(1)證明:平面平面;
(2)如何在上找一點,使平面并說明理由;
(3)若,對于(2)中的點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗》國家標準.新標準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于毫克/百毫升,小于毫克/百毫升為飲酒駕車,血液中的酒精含量大于或等于毫克/百毫升為醉酒駕車.經(jīng)過反復試驗,喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下圖,該函數(shù)近似模型如下:.
又已知剛好過1小時時測得酒精含量值為毫克/百毫升.根據(jù)上述條件,解答以下問題:
(1)試計算喝1瓶啤酒多少小時血液中的酒精含量達到最大值?最大值是多少?
(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整分鐘計算)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定數(shù)列,記該數(shù)列前項中的最大項為,即,該數(shù)列后項中的最小項為,記,;
(1)對于數(shù)列:3,4,7,1,求出相應(yīng)的,,;
(2)若是數(shù)列的前項和,且對任意,有,其中為實數(shù),且,.
(。┰O(shè),證明:數(shù)列是等比數(shù)列;
(ⅱ)若數(shù)列對應(yīng)的滿足對任意的正整數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點為、.
(1)求以為焦點,原點為頂點的拋物線方程;
(2)若橢圓上點滿足,求的縱坐標;
(3)設(shè),若橢圓上存在兩個不同點、滿足,證明:直線過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)一個周期內(nèi)的圖象,將圖象上所有點的橫坐標伸長為原來的2倍,縱坐標不變,再把所得圖象向右平移個單位長度,得到函數(shù)的圖象.
(1)求函數(shù)和的解析式;
(2)若,求的所有可能的值;
(3)求函數(shù)(為正常數(shù))在區(qū)間內(nèi)的所有零點之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為提高生產(chǎn)質(zhì)量,引入了一批新的生產(chǎn)設(shè)備,為了解生產(chǎn)情況,隨機抽取了新、舊設(shè)備生產(chǎn)的共200件產(chǎn)品進行質(zhì)量檢測,統(tǒng)計得到產(chǎn)品的質(zhì)量指標值如下表及圖(所有產(chǎn)品質(zhì)量指標值均位于區(qū)間內(nèi)),若質(zhì)量指標值大于30,則說明該產(chǎn)品質(zhì)量高,否則說明該產(chǎn)品質(zhì)量一般.
質(zhì)量指標 | 頻數(shù) |
2 | |
8 | |
10 | |
30 | |
20 | |
10 | |
合計 | 80 |
(1)根據(jù)上述圖表完成下列列聯(lián)表,并判斷是否有的把握認為產(chǎn)品質(zhì)量高與引人新設(shè)備有關(guān);
新舊設(shè)備產(chǎn)品質(zhì)量列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計 | |
新設(shè)備產(chǎn)品 | |||
舊設(shè)備產(chǎn)品 | |||
合計 |
(2)從舊設(shè)備生產(chǎn)的質(zhì)量指標值位于區(qū)間的產(chǎn)品中,按分層抽樣抽取6件產(chǎn)品,再從這6件產(chǎn)品中隨機選取2件產(chǎn)品進行質(zhì)量檢測,求至少有一件產(chǎn)品質(zhì)量指標值位于的概率.
附:,.
0.10 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點,,為橢圓上的動點,,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點,,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com