【題目】甲、乙、丙、丁和戊5名學生進行某種勞動技術比賽,決出了第1到第5名的名次.甲乙兩名參賽者去詢問成績,回答者對甲說,“很遺憾,你和乙都沒沒有拿到冠軍.”對乙說,“你當然不會是最差的.”從這個回答分析,甲是第五名的概率是______.
【答案】
【解析】
甲、乙不是第一名且乙不是最后一名,乙的限制多,故先排乙,有種情況;再排甲,也有種情況;余下的問題是三個元素在三個位置全排列,根據(jù)分步計數(shù)原理得到結(jié)果,再求出甲是第五名包含的不同情況的種數(shù),求出結(jié)果.
解:由題意可知,甲、乙不是第一名且乙不是最后一名,
乙的限制多,故先排乙,有種情況,即第二、三、四名;
再排甲,也有種情況,余下人有種排法.
故共有種不同的情況,
其中甲是第五名包含的不同情況有:
先排乙,有種情況,即第二、三、四名,甲是第五名,余下人有種排法,
故甲是第五名包含的不同情況有,
所以甲是第五名的概率為.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預報值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地擬建造一座體育館,其設計方案側(cè)面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是邊長為2的菱形,且.四邊形是平行四邊形,且.點,在平面內(nèi)的射影為,,且在上,四棱錐的體積為2.
(1)求證:平面平面;
(2)在上是否存在點,使平面?如果存在,是確定點的位置,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若方程所表示的曲線為,則有以下幾個命題:
①當時,曲線表示焦點在軸上的橢圓;
②當時,曲線表示雙曲線;
③當時,曲線表示圓;
④存在,使得曲線為等軸雙曲線 .
以上命題中正確的命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運動”是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了50人(男、女各25人),并記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 0~3000 | 3001~6000 | 6001~9000 | 9001~12000 | >12000 |
男 | 1 | 1 | 3 | 15 | 5 |
女 | 0 | 4 | 11 | 8 | 2 |
若某人一天走路的步數(shù)超過9000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”。
(1)利用樣本估計總體的思想,估計小明的所有微信好友中每日走路步數(shù)超過12000步的概率;
(2)根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有99.5%的把握認為“評定類型”與“性別”有關?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com