12.y與x之間的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$必定過( 。
A.(0,0)點B.($\overline{x}$,$\overline{y}$)點C.(0,$\overline{y}$)點D.($\overline{x}$,0)點

分析 把$\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}$代如回歸方程即可得出答案.

解答 解:∵把$\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}$代入回歸方程得$\stackrel{∧}{y}=\stackrel{∧}x+\overline{y}-\stackrel{∧}\overline{x}$,
∴當(dāng)x=$\overline{x}$時,$\stackrel{∧}{y}=\overline{y}$,
故線性回歸方程必過($\overline{x},\overline{y}$)點.
故選:B.

點評 本題考查了線性回歸方程過樣本中心的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD中點.
(I)證明:PB∥平面AEC;
(Ⅱ)設(shè)平面PBC與ABCD為60°的二面角,AB=1,AD=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.四面體有一條棱長為x,其余棱長為4.當(dāng)四面體體積最大時,其外接球的表面積為$\frac{80}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將正整數(shù)1,2,3,4…排列成陣(如圖),在2處轉(zhuǎn)第一個彎,在3處轉(zhuǎn)第二個彎,在5處轉(zhuǎn)第三個彎,…則第2016個轉(zhuǎn)彎處的數(shù)為( 。
A.1006010B.1006110C.1017073D.1017072

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線y=kx(k>0)與E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1交于A,B,C在x軸上,且AC⊥x軸,直線BC與E交于D,若AB⊥AD,則E的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,圖中網(wǎng)格小正方形邊長為1,則該幾何體的體積是(  )
A.4B.$\frac{16}{3}$C.$\frac{20}{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(文)從4名男生和3名女生中任選3人參加交通文明志愿者活動,則所選3人中恰有一名女生的概率為$\frac{18}{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,氣象部門預(yù)報,在海面上生成了一股較強臺風(fēng),在據(jù)臺風(fēng)中心60千米的圓形區(qū)域內(nèi)將受到嚴(yán)重破壞,臺風(fēng)中心這個從海岸M點登陸,并以72千米/小時的速度沿北偏西60°的方向移動,已知M點位于A城的南偏東15°方向,距A城$61\sqrt{2}$千米;M點位于B城的正東方向,距B城$60\sqrt{3}$千米,假設(shè)臺風(fēng)在移動的過程中,其風(fēng)力和方向保持不變,請回答下列問題:
(1)A城和B城是否會受到此次臺風(fēng)的侵襲?并說明理由;
(2)若受到此次臺風(fēng)的侵襲,改城受到臺風(fēng)侵襲的持續(xù)時間有多少小時?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.從某種設(shè)備中隨機抽取5個,獲得使用年限 xi(年)與所支出的修理費用 yi(萬元)的數(shù)據(jù)資料,算得
$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90
(1)求回歸方程$\widehat{y}$=bx+a;
(2)判斷變量 x與 y之間是正相關(guān)還是負(fù)相關(guān);
(3)估計使用年限為10年時維修費用是多少.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-bx
其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

同步練習(xí)冊答案