分析 作出可行域,根據(jù)可行域滿足的條件判斷可行域邊界x-2y=t的位置,列出不等式解出.
解答 解:作出可行域如圖:
∵平面區(qū)域內(nèi)存在點M(x0,y0),滿足x0+2y0=5,
∴直線x+2y=5與可行域有交點,
解方程組$\left\{\begin{array}{l}{x+2y=5}\\{3x-2y=3}\end{array}\right.$得A(2,$\frac{3}{2}$).
∴點A在直線x-2y=t上或在直線x-2y=t下方.
由x-2y=t得y=$\frac{x-t}{2}$.
∴$\frac{2-t}{2}≥\frac{3}{2}$,解得t≤-1.
故答案為:(-∞,-1].
點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)可行域的條件判斷A點與可行域邊界x-2y=t的位置關(guān)系是關(guān)鍵.考查學(xué)生的推理能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | 1 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{25}{36}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com