【題目】通過隨機(jī)詢問110名性別不同的中學(xué)生是否愛好運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由得,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是 ( )
A. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為 “愛好運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
D. 有以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知4名學(xué)生和2名教師站在一排照相,求:
(1)中間二個(gè)位置排教師,有多少種排法?
(2)首尾不排教師,有多少種排法?
(3)兩名教師不站在兩端,且必須相鄰,有多少種排法?
(4)兩名教師不能相鄰的排法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了評(píng)估A,B兩家快遞公司的服務(wù)質(zhì)量,從兩家公司的客戶中各隨機(jī)抽取100名客戶作為樣本,進(jìn)行服務(wù)質(zhì)量滿意度調(diào)查,將A,B兩公司的調(diào)查得分分別繪制成頻率分布表和頻率分布直方圖.規(guī)定分以下為對(duì)該公司服務(wù)質(zhì)量不滿意.
分組 | 頻數(shù) | 頻率 |
0.4 | ||
合計(jì) |
(Ⅰ)求樣本中對(duì)B公司的服務(wù)質(zhì)量不滿意的客戶人數(shù);
(Ⅱ)現(xiàn)從樣本對(duì)A,B兩個(gè)公司服務(wù)質(zhì)量不滿意的客戶中,隨機(jī)抽取2名進(jìn)行走訪,求這兩名客戶都來自于B公司的概率;
(Ⅲ)根據(jù)樣本數(shù)據(jù),試對(duì)兩個(gè)公司的服務(wù)質(zhì)量進(jìn)行評(píng)價(jià),并闡述理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函數(shù)y=f(x)的值域
(2)若f(x)在區(qū)間 上為增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足.當(dāng)時(shí),,當(dāng)時(shí),,則f(1)+f(2)+…+f(2015)=( )
A. 333 B. 336 C. 1678 D. 2015
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價(jià)是30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價(jià)元與日銷售量件之間有如下關(guān)系:
x | 45 | 50 |
y | 27 | 12 |
(1)確定與的一個(gè)一次函數(shù)關(guān)系式;
(2)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當(dāng)銷售單價(jià)為多少元時(shí),才能獲得最大的日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若函數(shù)在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)在處的切線方程為.求證:對(duì)任意的,總有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com