14.已知橢圓的標(biāo)準(zhǔn)方程為${x^2}+\frac{y^2}{10}=1$,則橢圓的焦點(diǎn)坐標(biāo)為( 。
A.(-3,0),(3,0)B.(0,-3),(0,3)C.(-$\sqrt{10}$,0),($\sqrt{10}$,0)D.(0,-$\sqrt{10}$),(0,$\sqrt{10}$)

分析 根據(jù)題意,由橢圓的標(biāo)準(zhǔn)方程分析可得該橢圓的焦點(diǎn)在y軸上,且a2=10,b2=1,計(jì)算可得c的值,進(jìn)而由焦點(diǎn)坐標(biāo)公式可得答案.

解答 解:根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為${x^2}+\frac{y^2}{10}=1$,
則其焦點(diǎn)在y軸上,且a2=10,b2=1,
則c2=a2-b2=9,即c=3,
故其焦點(diǎn)的坐標(biāo)為(0,3),(0,-3);
故選:B.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是掌握由標(biāo)準(zhǔn)方程判斷焦點(diǎn)位置的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法正確的是( 。
①|(zhì)$\sqrt{(x+4)^{2}+{y}^{2}}$|-|$\sqrt{(x-4)^{2}+{y}^{2}}$=0        
②|$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$=14
③|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=6         
④|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=18.
A.①表示無軌跡 ②的軌跡是射線B.②的軌跡是橢圓 ③的軌跡是雙曲線
C.①的軌跡是射線④的軌跡是直線D.②、④均表示無軌跡

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)=$\left\{\begin{array}{l}{x+2,(x≤-1)}\\{{x}^{2},(-1<x<2)}\\{2x,(x≥2)}\end{array}\right.$,則f(3)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某校高一(1)班50個(gè)學(xué)生選擇校本課程,他們在A、B、C三個(gè)模塊中進(jìn)行選擇,且至少需要選擇1個(gè)模塊,具體模塊選擇的情況如表:
模塊模塊選擇的學(xué)生人數(shù)模塊模塊選擇的學(xué)生人數(shù)
A28A與B11
B26A與C12
C26B與C13
則三個(gè)模塊都選擇的學(xué)生人數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合M是同時(shí)滿足下列條件的函數(shù)f(x)的全體:①f(x)的定義域?yàn)椋?,+∞);②對(duì)任意的正實(shí)數(shù)x,都有f(x)=f(${\frac{1}{x}}$)成立.
(1)設(shè)函數(shù)f(x)=$\frac{x}{{1+{x^2}}}$(x>0),證明:f(x)屬于集合M,且存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得對(duì)任意的正實(shí)數(shù)x,都有g(shù)(x+$\frac{1}{x}}$)=f(x)成立;
(2)對(duì)于集合M中的任意函數(shù)f(x),證明:存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得對(duì)任意的正實(shí)數(shù)x,都有g(shù)(x+$\frac{1}{x}}$)=f(x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦點(diǎn)為$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$、$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$為橢圓上的一點(diǎn),$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則△F1PF2的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=2.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)兩圓交點(diǎn)分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知四組函數(shù):
①f(x)=x,g(x)=($\sqrt{x}$)2;
②f(x)=x,g(x)=$\root{3}{{x}^{3}}$;
③f(n)=2n-1,g(n)=2n+1(n∈N);
④f(x)=x2-2x-1,g(t)=t2-2t-1.
其中是同一函數(shù)的( 。
A.沒有B.僅有②C.②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)A(-1,0),B(1,0),直線AM,BM相交于M,且它們的斜率之積為2.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)若過點(diǎn)$N(\frac{1}{2},1)$的直線l交點(diǎn)M的軌跡于C,D兩點(diǎn),且N為線段CD的中點(diǎn),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案